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Executive summary 
This deliverable contains information about the design of experiments and plans for implementation 

of the Live Labs. Within the framework of the CISC project three Live Labs are proposed: 

• Live Lab 1- Human robot collaboration: Live Lab 1 is divided into three different scenarios 

located in IMR’s pilot factory in Mullingar and in the Faculty of Engineering, University of 

Kragujevac. This Live Lab will focus on how operators can better interact with robots at various 

different control levels. The efficiency and safety of these operations will be studied and data 

concerning human factors, such as attention and comfort etc., collected.  

• Live Lab 2- Augmenting Human performance: Live Lab 2 is focused on manufacturing 

operations in a large-scale automotive plant. The project will collect data during 

manufacturing and model the human operator’s performance versus task complexity. The 

objective is to exploit this data to enable optimization of human performance while 

simultaneously predicting anomalies and scheduling maintenance events.  

• Live Lab 3- Assisting Human decision-making: Live Lab 3 is divided into two different scenarios, 

firstly utilizing data obtained from a real control room in Yokogawa’s facility servicing the Oil 

and Gas industry and secondly data collection and exploitation from a controllable simulated 

environment developed by POLITO (Politecnico di Torino). The objective is to explore alarm 

flooding events, i.e., when multiple alarms occur simultaneously and how to predict such 

events and how to ensure the human operator is not overwhelmed.  

This deliverable describes experimental setup for each LIVELABs the project implementation and the 

role of the researchers within each LIVELAB.  
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1. Introduction 
Maintaining optimal human and system performance is a major concern in Industry 4.0, particularly 
for safety-critical applications. Failure in the proper integration between automation, intelligent 
systems and the operators has resulted before in disastrous consequences, where the poor design of 
the system has led to a reduction of the operator’s vigilance, reduction of situational awareness, 
information overload and/or loss of ability to manually control the system. It is then paramount for 
this new stage of collaborative intelligence in industry to prioritize the human-system interaction and 
communication to increase awareness of each other’s actions and intentions. Indeed, this shift 
towards a human-centric approach complements existing industry 4.0 methods and contributes to the 
European Commission’s vision of Industry 5.0, i.e. a manufacturing eco-system that brings benefits to 
industry, workers and the broader society.  

Within the CISC project, different levels of interaction are studied through the use of Live labs. The 
Live labs are a means to validate research in near-real environments and ensure that the ESRs are 
exposed to real-world problems. There are multiple Live labs within the project which can be divided 
into three main classes. First, researchers will focus on direct human robot interaction. In this scenario, 
the human will oversee or teach a robot to complete a task. CISC will study the programming methods 
and aim to optimize this teaching process to improve task efficiency and human ergonomics. Secondly, 
researchers will focus on exploiting the data from a human executed manufacturing process. To do 
this efficiently, human performance will be modelled considering task complexity. The data generated 
during the manufacturing process can then be used to improve human performance and signal 
potential failures and maintenance events.  Finally, researchers will study control room tasks, where 
humans must oversee complex and critical operations. CISC will show how machine learning and data 
analysis can alleviate stress, predict overloading scenarios and thus aid allow human operators to 
make judicious decisions under stressful conditions.  

In all three scenarios, the human operator remains a central component responsible for the high-level 
cognitive actions. The CISC project will aim to amplify an operator’s capabilities while maintaining a 
level of safety and ergonomics. This deliverable will outline the three LIVELABs central to the CISC 
project. The components, location and activity are described, and research implementation and 
experiment design are outlined. Each ESR has the opportunity to validate their algorithms/ approach 
across all LIVELABS however their methods/ approaches are typically tailored to a single main 
experiment. Table 1 shows, each ESRs associated LIVELAB and the proposed research topic.  
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Table 1: Summary of ESR and their interaction with different LIVE LABS 

ESR 
# 

ESR name Live Lab1 – Human Robotic 
Collaboration  
IMR/FINK 

Live Lab2 – Augmenting 
Human Performance 
IVECO  

Live Lab3 - Assisting Human decision-making 
YOKOGAWA/POLITO 

1 Houda Briwa   Building a model for human performance prediction in 
critical scenarios using a Bayesian network (case of alarm 
floods in the control room) preceded by designing an 
experiment for HRA (Human Reliability assessment) data 
collection. 

2 Devesh Jawla  Anomaly prediction and 
predictive maintenance using 
machine learning techniques 

 

3 Joseph 
Mietkiewicz 

  Predicting trips and critical scenarios using Bayesian 
Network (BN) to help decision making for a human 
operator. Compare data-driven BN, expert knowledge and 
data, and purely expert knowledge BN for online 
prediction. 

4 Chidera 
Winifred 
Amazu 

  Process safety data modelling for human-in-the-loop 

configurations in process control 

5 Ammar 
Abbas 

  process control optimization with alarm reduction and 
prioritization in an online human-in-the-loop setting using 
deep reinforcement learning. 

6 Milos Pusica   Designed an experiment for evaluation of impact of 
simple/complicated visual assembly line instructions on 
operator's mental workload. 

7 Carlo Caiazzo Human ergonomics and task 
partitioning in human robot 
collaboration tasks 

  

8 Ines Ramos Real-time interface adaption 
for human-in-the-loop 
telerobot operations 

  

9 Doaa 
Almhaithawi 

  Using latent spaces to explore security challenging such as 
intrusion detection and pattern recognition 

10 Naira Lopez 
Cañellas 

Legal and Ethical Implications 
of Collecting and Analysing the 
Output of Real-Time Data-
Gathering Devices in the 
Workplace 

Legal and Ethical Implications 
of Collecting and Analysing the 
Output of Real-Time Data-
Gathering Devices in the 
Workplace 

Legal and Ethical Implications of Collecting and Analysing 
the Output of Real-Time Data-Gathering Devices in the 
Workplace 

11 Carlos 
Albarrán 
Morillo 

 Design experiments in a real 
automotive sector line work 
environment for Human-
machine performance 
monitoring and prediction 

 

12 Aayush Jain Programming from 
demonstration for fast robot 
programming. Human 
assistance during anomaly 
detection.  

  

13 Shakra 
Mehak 

Safety and certification during 
human demonstrations and 
corrections of robot tasks 

  

14 Andres 
Alonso Perez 

  Apply wavelet transform series to model operator’s mental 
workload by processing and analysing signals recorded 
from wearable sensors such as electroencephalograms 
(EEG). 
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2. Live Lab 1: Human Robot Collaboration (IMR & FINK) 

2.1. Objective 
The goal of this Live Lab is to investigate how humans and robots can cooperate to amplify each other’s 

capabilities and how to optimize the interface and environment such that the human’s comfort and 

safety is prioritized. This Live Lab is situated in IMR’s facility in Mullingar with an additional study 

located in the Faculty of Engineering, University of Kragujevac.  

2.2. Description 
Human-Robot collaboration has been shown to improve ergonomics on factory floors while allowing 

a higher level of flexibility in production. However, the current robot programming interfaces require 

domain expertise. Moreover, robots’ response for every possible event needs to be configured in 

advance which makes them hard to reprogram. Therefore, more intuitive methods of programming 

are desirable for instance by demonstration. Such systems could allow a non-expert to intuitively 

program robots on-the-go, without explicitly coding each detail. This would in turn allows a user to 

guide the robot through a task which the robot can then repeat either through mimicry or, using more 

advanced algorithms to extract underlying task primitives.  

Although much effort has been put towards demonstrating compelling results in the laboratory, such 

methods are still not widely used in industrial applications. The main challenges in this field are the 

automatic learning of task representations and adaptability of the learned tasks in an uncertain 

environment, where each task can be expressed as a series of primitive action components. 

Additionally, in order to facilitate the widespread use of such technologies, it is imperative to consider 

human factors including ergonomics, stress and comfort level but additionally legal and certification 

challenges. Within the Live Lab 1 environment there are two human robot collaboration stations. First 

a dual arm collaborative robot cell, shown in Figure 1 and secondly a teleoperation cell shown in Figure 

2. Each scenario is equipped with a range of human factors sensors to evaluate the effects of the robot 

instruction on the human user. The objective of the Live Lab is thus two-fold, first explore innovative 

methods of robot programming and second ensure that the developed methods are human centred 

and there exists a mean towards certification of such methods in the future.  
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Figure 2: Live Lab1: Teleoperation or human-in-the-loop control consisting of two separate stations. Input station, 2 haptic 
input devices an eye-tracker and a digital representation of the remote robot cell. Output side, two industrial robots a top-
down vision system, a set of USB mini-cameras and force sensors at the end of the robots’ arm.  

  

Figure 1: Livelab1: Direct Human robot collaboration cell, featuring two collaborative manipulators a FANUC CRx10 and 
UR10e each equipped with grippers, and a top down RGB-D camera. 
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2.3. Implementation & Design of Experiments  

2.3.1. Direct Human Robot Collaboration 
The aim of this experiment is to develop a framework for learning human actions and skills through 

demonstration to reduce the task definition time for collaborative flexible assembly lines. 

Furthermore, an anomaly detection method to identify the uncertainties in the assembly process and 

adaptable robot behaviours will be studied. Factory set-up for testing and validation that emulates 

one-off manual tasks will be designed. Lastly, the scenario will be evaluated and iterated based on 

ergonomic and safety certification factors. 

In IMR, the UR10 robot arm equipped with a gravity compensation controller is used for this study. 

Gravity compensation enables us to use this collaborative robot for kinesthetic task teaching of the 

task from human demonstrations. The robot is equipped with a Robotiq 3-Finger Adaptive Robot 

Gripper with continuous grasp capabilities. A Microsoft Kinect v2 RGB-D camera is mounted above the 

robot and is used as a vision sensor that provides information about the workspace and tracks the 

object’s current state on the table.  

As shown in Figure 4, the proposed case study is organised into three main phases: the human-robot 

collaboration (HRC) phase, the learning phase and the execution phase. The perception modules, 

which sense the robot’s internal state and object information, is run in parallel to other modules 

throughout the three phases. 

During the HRC phase, the actions for each type of object are demonstrated via kinesthetic teaching 

by the human teacher. Time series data from the perception module during the demonstrations is 

recorded and stored in a dataset. The dataset is composed of end-effector pose, joint angles, gripper 

position, object pose and zone status. To test the working hypothesis, industrial scenarios of pick and 

place and assembly task are selected. The current focus of the experiments is on pick and place tasks 

where a single demonstration is used for each object type to learn the actions. 

Figure 3: Human Robot Collaboration Station in University of Kragujevac 
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Each robotic task can be decomposed into a sequence of sub-tasks and in turn each sub-task 

corresponds to a unique action. When these actions are performed sequentially, they can replicate 

the demonstrated task. To learn these sequences, a high-level learning module uses the collected 

data, where each task is segmented into actions and labelled with the corresponding object ID. 

Dynamic movement primitives (DMP) are used as a trajectory encoder in the low-level learning 

module. The segmented data for each action is converted to a DMP and stored with the same object 

ID. The execution phase is responsible for the adaptation and implementation of the stored action.  If 

any object in the current frame matches an object stored in the database, the real-time execution 

module is activated. After object identification, the high-level objective of “what actions to initiate?” 

calls the previously learned actions and sequences. Now, the low-level objective “how to perform 

these actions?” is adapted by modifying the learned DMP based on current start and goal positions. 

Finally, the computed trajectories from each DMP are executed in the learned sequence to perform 

the task. 

As the learned model is deployed to perform these tasks, there is a possibility of running into 

anomalies or changes in the environment. In these situations, the learned model needs to adapt to 

the situation and get back to normal working condition. In certain situations, it might require human 

intervention or feedback to correct its behaviour or adapt the model. Therefore, the current focus is 

on studying how human supervision and autonomous anomaly detection can be used to identify the 

need for corrective demonstrations. Furthermore, we will focus on how the learned model can adapt 

to the new environment with minimal corrective demonstration or human feedback 

The method and modalities of human instructed teaching leads to several additional questions, which 

using the setups both in IMR and in the Faculty of Engineering, University of Kragujevac, the CISC 

project will aim to answer. For instance, what are the physiological data to take into account for the 

physical ergonomic assessment?  How to plan and optimize the usage of resources for the tasks? How 

to manage occupational risks for health and safety of operators? What is the best strategy to timely 

communicate the important work-related information to the worker?  

CISC will take a Human-Centred Design (HCD) approach to making the system usable by focusing on 

the requirements and needs of the operator, applying safety, ergonomics/human factors principles 

and techniques. In this regard, in the Live Lab at the Faculty of Engineering, University of Kragujevac 

(Serbia), an innovative hybrid modular workstation is designed respecting the anthropometric, safety, 

and ergonomic requirements. The workstation is equipped with a PC touch-screen, industrial 

computer, adjustable work chair, homogeneous LED lighting, and audio system to simulate the real 

work environment. Additionally, the workstation can be implemented with a cobot modular unit to 

conduct HRC experiments. The designed workstation represents the laboratory infrastructure for 

conducting neuroergonomic experiments and studying the behaviour of operators at the workplace.  

This study will initially be undertaken at Faculty of Engineering, University of Kragujevac’s human 

robot collaboration station shown in Figure 3 before being adapted to the cell at IMR which will 

validate the methods generality.  

 



 D5.1. LIVE LABS design of experiments and plans for implementation 

      
 

 

This project has received funding from the European 
Union’s Horizon 2020- MSCA-ITN-2020 under grant 

agreement No. 955901 

 

 

Figure 4: Proposed System overview for learning from demonstration 

This type of collaboration enables the operator and industrial robot to perform tasks within a 

predefined work area; this ability to work collaboratively is anticipated to increase productivity but 

raises safety concerns due to the increased likelihood of hazardous situations arising due to the 

proximity of humans and industrial robots. Developing collaborative applications requires a 

commitment to safety. As such ESRs will conduct a study concerning the design level risk assessment 

in accordance with the working modules of Pilz, Ireland. The objective is to optimize the HRC safety 

criteria in relation to industrial safety standards. Currently ESR 13 is attending 2 weeks CMSE 

(Machinery Safety Expert) Training organized by Pilz, Ireland to understand the process of CE marking 

and risk assessments for industrial applications. In particular, the ESR will focus on certification process 

within existing HRC standards and the necessary adaptations to these standards which would facilitate 

fluid human robot collaboration while still maintaining the necessary safety standards 

2.3.2. Teleoperation 
With the recent advances in wearable technology, it is now possible to monitor the operator’s internal 

state, through changes in their physiological signals. Intelligence systems can then be made aware of 

the operator’s state, not only to avoid critical situations of degraded performance, but to act 

proactively and adapt the automation level, the interface or interaction mode to the operator’s needs 

to achieve optimal system performance. 

In teleoperation of robots, where the operator is remotely located, the challenge lays in the reduced 

operator’s situational awareness and lack of information to make sound decisions. This is therefore 

an appropriate case study to assess states of degraded performance using wearable sensor technology 

and collect a dataset to train a deep learning model to predict performance-related operator’s states, 

based on the recorded physiological signals. 
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This Live Lab is conducted at IMR’s facilities in Mullingar in conjunction with two industry partners 

from the medical device manufacturing industry. In both cases, the partners are interested in 

teleoperation as a means to increase yield rate of product and operator ergonomics.  The medical 

device manufacturing industry requires precise assembly tasks and the manipulation of complex 

objects. These operations are difficult to accomplish and indeed even program using standard robotic 

tools. Consequently, many medical device companies struggle to locate system integrators willing to 

automate a task for a reasonable budget. Additionally, since many materials are deformable, task 

parameters vary, leading to proposed automated solutions which are inflexible and rely on complex 

jigs and fixtures. The resulting solutions are applicable to a narrow class of assembly tasks. Maintaining 

this type of manufacturing in a high-cost society has become a priority and thus there is an urgent 

need for a class of adaptable automated solutions. In this particular use-case of telerobots there is no 

major safety concerns, however parallels can be drawn with other safety-critical applications, such as 

the use of telerobots for surgery, for military missions or rescue activities. 

The preliminary experimental hypothesis is that human-machine interface and interaction haptic and 

visual factors can affect the cognitive/mental state of the operator and consequently the 

teleoperation task performance (schema illustrating the experimental hypothesis shown in Figure 2). 

A pilot study needs to be conducted first to determine what interface and interaction conditions affect 

operator mental state and performance. The following experiments’ objective is then to use the 

designed interface/feedback conditions, validated in the pilot study, to induce performance-related 

internal states, such as mind wandering, effort withdrawal, perseveration, inattentional blindness and 

deafness, while the operator is performing a fine manipulation task and the physiological signals are 

being monitored by wearable devices (portable EEG device from mBrainTrain, eye-tracking using Tobii 

pro device installed in the interface screen and galvanic skin response measured with a wireless 

Shimmer device). The induced states will be validated with subjective measures gathered through 

questionnaires and objective metrics/indicators computed from the recorded physiological signals 

and task-related measures. 

The case study goal is two-fold: the first is to identify and validate different telerobot interface factors 

and how they affect the operator internal state and performance, and the second is to create a dataset 

by collecting multi-modal data from participants while they perform a real telerobot task and while 

different performance-related internal states are evoked and assessed. The dataset will then be used 

to train a deep learning model to differentiate between these hidden internal states using multi-modal 

body-signals, with the goal to build a model that can be used to provide control input for real-time 

interface adaptation (adapt haptic, visual and auditory interface to the operator state) or during the 

interface design process of a system. 

 

 

 

 

  
Figure 5: Experimental Hypothesis Scheme 
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3. Live Lab 2: Making the Automotive Factory floor safer (IVECO) 

3.1. Objective 
The goal of Live Lab 2 is to demonstrate how data can be exploited to enable predictive maintenance 

and fault detection in human-in-the-loop operations within an industrial environment. This Live Lab is 

situated in IVECO’s facility in Suzzarra, Italy, and transferrable to the IVECO’s facility in Valladolid Spain. 

3.2. Description 
The manufacturing field is a sector still widely based on human operations, despite increasing 

automation. The automotive sector, for instance, is based on assembly lines, where the automation 

process is becoming more and more complex. Different operators contribute to assembly products, 

which call for different operational capabilities and a multi-faceted approach for analysing critical-

safety procedures and making technological decisions.  

IVECO is an automotive company where production systems are based on assembly lines that require 

the interaction between highly automated workstations and highly trained human resources. The 

researchers here will test human-in-the–loop-automation performance in the context of different 

workstations.  

Human Factors (HF) is a critical component for employers’ safety. A practical way to assess human 

performance modelling as the reliability of individuals to perform a specific duty, can help identifying 

critical scenarios in manufacturing plans. When an operator has enough capabilities to perform a 

complex given task, the probability of accident or error is reduced. According to the kind of tasks 

involved in the assembly line, the CISC project will devise and use the so called “ability corner” where 

empirical testing can be carried out to assess a set of measurable capabilities for the Human-

automation interaction such as Manual skills, Memory and Physical skill, The tests have to represents 

or simulate frequent operations close to the ones performed in the assembly line. While on the other 

end the real sensory data from the machinery interaction (such as welding operations) performance 

will also be collected (parts completed without errors, unsafe conditions etc.). 

The CISC project will exploit data such to aid help IVECO in predictive maintenance and fault/anomaly 

detection and predictive maintenance will be performed using IoT (Internet of Things) sensor data, 

where we can use ML techniques to predict any faults and or schedule maintenance work in order to 

reduce losses and increase efficiency. If they require a fault detection mechanism, ML techniques will 

be utilized and, since these are rare in occurrence, active learning could provide an optimal and novel 

solution. By using Bayesian neural networks, we would also be able to offer credible predictions. Fault 

detection data could be in the form of human sensor data, or it could be IoT sensor data from 

machinery which are safety critical in nature. 
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3.3. Implementation and Design of Experiments 

3.3.1. Evaluating Human Performance 
Human performance (HP) modelling can be described as the result of an interaction between the 

level of skill demanded to achieve a given job in a working place with the capabilities of the 

employees assigned to it. In particular we will be working off assumptions displayed in the literature 

(Leva et al. 2016, Comberti et al. 2018, Leva et al. 2022) that human performance could be 

represented as directly dependent on two macro-factors:  

1. Task Complexity (TC): assessed through Mental Workload (MW) and Physical Workload 

(PW), both associated to each activity identified and analysed in the assembly line. 

2. Human Capability (HC): it represents the skills of workers under the actual working states, 

including the physical, mental and cognitive abilities of each employee. 

It is applied this framework to assembly line work, the HC component can be grounded in three 

quantifiable capabilities: Memory, Manual and Physical skills assessed using the “ability corners”. The 

TC is estimated by assessing the observable variables related to Mental and Physical Workload and 

expressed in terms of indices harmonized in a Likert scale. The HP model results are addressed using 

a matching index matrix that compared the required aptitudes for each workstation with the 

harmonized recorded skillsets of each worker. The final goal is to provide a framework to better match 

workstation task requirement to operator capabilities so as to minimise error and inform a risk 

assessment for manufacturing errors and unsafe conditions that is currently quite static and generic  

Figure 6: Live Lab 2, IVECO's facility in Italy 
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Human Capability, as mentioned in the previous section represents the total amount of resources that 

a worker can offer to execute tasks under given environmental working condition. Literature suggests 

a large set of human skills that could be solicited by performing manual a task but considering the 

purpose of the project and the operational need a set of three abilities have been considered as 

solicited by tasks composing the assembly line. In particular, the human abilities that have been 

considered were:  

• Manual: skills like precision, manual handling and coordination are solicited continuously 

during an assembly task. 

• Physical: the skill of maintaining a constant performance during the shift and coping with 

pace. 

• Memory: remembering the sequence of operations and parts to be assembled can differs 

considerably from task to task. 

These variables have been related to the results of four empirical tests, the so-called ability corner 

performed by the operators (form more details see Comberti et al. 2018, Leva et al 2022) . Tests have 

been designed to simulate frequents operations close to the ones performed in the assembly line and 

to be more linked to human skill tests have to be performed by operators during the working activity. 

This operation was done with the technical support of a plant work analyst and line supervisor. The 

fourth test defined were: 

• Precision test: it consists in moving an iron stick along a not linear contour without touching 

the borders. This test is related to the manual precision required in many tasks where workers have 

to assembly components avoiding impact. The number of errors were recorded during this test. 

• Both-Hands test: The Work-organisation of the plant promoted the simultaneous use of 

both hands to perform the task. This was done to minimize the time required to complete the task 

and minimize the number of operator movements. Both-Hands test measures the ability of a worker 

to use both hands to perform simple actions. Time and precision of coordinate movements were 

recorded. 

• Methodology test: During this test, the worker has to decide and complete a set of simple 

assembly steps with small parts. Time and errors were recorded. 

• Memory test: sequences of geometric schemes were shown to the worker for a few seconds. 

The worker was then asked to replicate them on a desktop. The time to complete the task and its 

accuracy were recorded during this test. 

Test execution involved the operators of the line directly. To minimize the disturbance to the plant 

activity, a training area was set nearby to the assembly line selected as a case study. In this area, the 

four tests were located. The campaign of the tests has been anticipated by a single session during 

which the operator received a profound explanation of the project, and they could freely try the four 

tests. This was done to limit any surprise effects on the operator performance. The tests were planned 

to minimize the impact on the working activity of the assembly line itself, and the average time of 

execution was between 10-12 minutes. To perform the tests, each worker was given a short break, 

for the time strictly necessary, and replaced by a substitute as it usually happens for any temporary 

absence. This configuration allowed the tests to be repeated 3 times during the whole shift for all the 
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workers. All test results showed good discrimination of workers skills highlighting a wide range of 

variation in performances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. Fault detection 
The recent technological advances in various fields, including artificial intelligence (AI), allow enriching 

the human performance modelling. Since the dawn of the era of modern computers, some tasks, 

particularly repetitive ones, are best performed by machines. However, nowadays, more than that is 

demanded. The emerging technologies aim to improve operator safety, performance, and well-being 

and enhance the capabilities of the work-station-operator interaction. As a result, operators will have 

to acquire a broader range of specific skills. They will have more and more often to combine traditional 

task-associated expertise with computer science one. 

Some initial research questions can be formulated that may feed the paradigm transformation. Which 

additional technological advances could be added to analysis the human performance in safety-critical 

scenarios, and how? Which are the pros and cons of these ongoing advances from the human 

performance point of view? Are all the devices or methods suitable to apply into the automotive 

sector? How can the data for assessing the operator’s abilities and task complexity be collected? How 

could this approach be improved? Exploring the literature will be the first step to comprehend how 

the human performance model could be enhanced and deployed within safety-critical systems.  

Figure 7: Assessment of human capabilities for live lab 2 (from Comberti et al. 2018)  
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A framework similar to this will be proposed in Live Lab 2. Managing the working environment reduces 

the probability of quality issues and human errors thus more attractive to an employer. On the other 

hand, many sensors collect data from the shop floor in the automotive sector. The information about 

the workstation counts for understanding the human performance. Machinery downtime and 

servicing could be reduced considerably if intelligent systems predicted maintenance needs. There are 

two relevant concerns for the automotive industry that could be addressed using ML/AI techniques, 

namely, predictive maintenance and anomaly detection:      

   • Predictive maintenance: Timely maintenance of in-service equipment is needed to increase safety 

and efficiency. Predictive Maintenance monitors the condition of equipment and uses machine 

learning for the definition of actual state and forecasting future states. This approach differs from 

preventive maintenance, which relies on statistical expected lifetimes of equipment, in order to 

predict when maintenance is required. This approach offers cost savings over preventive maintenance 

because maintenance is performed only when warranted. In addition to improved productivity, this 

approach uses fault detection to reduce waste production and prevent accidents. 

        • Anomaly Detection: This technique deals with the identification of abnormal data points which 

deviate significantly from the usual data. Its applications are numerous, and in the context of industry 

and IoT, it is used to identify safety-critical scenarios, for example, detecting the malfunction of 

equipment in production assembly or detecting faulty products coming out of an assembly. For IoT 

and Sensor Time-Series Data, anomaly detection uses AL, through uncertainty sampling. For example, 

suppose a highly imbalanced data with 999 regular events and only one abnormal event. In that case, 

the algorithm provides a label for this one abnormal event. There are usually only very few key events 

that require human attention in a very long time series. Here, AL and anomaly detection detect 

anomalies and learn about these critical events rather than the complete time series. 

For IoT and Sensor data, we can perform anomaly detection and predictive maintenance using the 

following techniques: 

        • Active Learning (AL) for Anomaly Detection in IoT and Sensor Time-Series Data: A major 

challenge with anomaly detection is that by definition, anomalies are rare events, and so to train a 

data driven anomaly detection model it may be necessary to review and label a very large number of 

data points in order to identify a sufficient number of anomalous datapoints for the data driven 

anomaly detection model to be trained on. Active learning is based on the belief that comparable 

model performance can be achieved using a small, curated dataset as compared to a large dataset. 

Building on this belief, the goal of active learning is to reduce the cost of data labelling by attempting 

to select the most useful data points to label in order to achieve high model accuracy. The basic idea 

is to iteratively train models on a task using small amounts of labelled data, use the model 

performance on the data to inform the selection of new data points for labelling, and then label the 

selected data points and retrain the model using the extended training dataset. In essence, the model 

is used to inform the selection of the data that are presented to a human annotator/expert for 

labelling and that are then used to retrain the model. AL finds applications in the industry due to a 

need for a safety critical system, and an efficient system so that it is practical for use in the industry. 

A Bayesian Deep Active learning framework for example provides credible predictions and therefore 

sits well with our requirements of a safety critical system. Moreover, in contrast to a passive ML 

system, we need to actively make sure that our system does not miss any valuable data. AL ensures 
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this by way of uncertainty sampling and diversity sampling that we address all the classes, for example, 

if we have data which is highly imbalance with 999 normal events and only 1 abnormal event, we need 

an algorithm which makes sure that we provide a label for this 1 abnormal event. Secondly, AL 

naturally makes a supervised learning agent much more efficient because we require fewer samples 

to train our agent. IoT and Sensor Time series data can be explored much more efficiently by AL 

because usually in a very long time series there are only very few key events which require human 

attention. Here our task then becomes AL and Anomaly detection, where we first detect anomalies 

and then learn about only these important events, rather than learning about the complete time 

series. 

        • Predictive maintenance using Reinforcement Learning (RL) and Active Learning: RL is a powerful 

technique used for decision making and predicting future states. It is based on the concept of training 

a model by rewarding correct predictions and penalizing incorrect predictions. For example, given a 

state of chess board, a RL algorithm could predict the best move to make. We can use reinforcement 

learning and AL to incorporate a human in the loop for predictive maintenance. Say, our RL algorithm 

predicts a certain part of a machine needs replacement then our system can alert a human that a part 

needs a replacement, however in the other case if the part in question does not need a replacement, 

then our AL algorithm can query the human and improve the RL agent from this feedback. 

In addition to the above analysis, a set of future experiments will be proposed in the framework of 

Live Lab 2. These experiments will collect IoT sensor data from a single or multiple machines which 

form a complete process (for example, one complete process would be robots spray painting the 

metal body of vehicle, this process is in itself complete when the painting has finished, one could then 

investigate for any defects in the paint job using ML and controlling for quality with the help of a 

human). Additionally, the so-called “ability corner” will be re-design and validated experimentally. 

Figure 8: Enriching Human Performance through ML techniques adapted from Leva et al.2016 
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4. Live Lab 3 Assisting Human decision-making (YOKOGAWA, 

POLITO) 

4.1. Objective 
The goal of Live Lab 3 is to demonstrate how data analysis and advanced control techniques can 

optimize the control for the process industry. This Live Lab is situated in Yokogawa’s facility in the 

United Kingdom and additionally in POLITO’s facility in Turin. 

 

4.2. Description 
Safety is of paramount importance in critical industries like the process and energy industries, for 

example, in oil and gas facilities. Several error sources have been identified to impact safety in these 

domains of which human error has been most consequential. However, studies have shown that 

human error is also as a result of their interaction with other systems and their environment. Indeed, 

while human operators are the key in a critical situation in the industry but 80 % of accidents in the 

industry is caused by human.  In a critical situation, humans tend to use intuition over systematic 

evaluation and trade-offs. Sensible to cognitive biases (like recency bias, confirmation bias,…) and 

overload. 

The Live Lab focuses on control room operations and human’s situational awareness during stressful 

interventions i.e., alarms. Primarily this Live Lab will be based on Yokogawa’s facility with a particular 

focus on risk monitoring in control runs. To facilitate the research, Yokogawa are providing a dataset 

with over 150,000 samples and 44 features, consisting of timestamps of alarm and alert events.  

The Live Lab will also provide a simulated Distributed Control System (DCS) in a laboratory setting in 

POLITO in Turin. The system can accurately simulate a process plant and has the flexibility to allow 

different scenarios of normal operations, failures, and emergencies to be simulated through a scenario 

editor. The simulator is customisable to produce a range of scenarios and fit with different possible 

HMI and DCS environments. This empirical study aims to investigate the influence of both obvious and 

latent factors (human, organisation, and technical) during man-machine interaction and the 

consequence on human performance and safety. A case study on the production of formaldehyde in 

a chemical plant has been selected and simulated for this purpose. The facility produces around 10000 

kg/h of 30% formaldehyde solution, operating the partial oxidation of methanol with air. The human-

in-the-loop configurations in simulation is varied from a monitoring to both monitoring and control. 

Both normal and abnormal situations have been considered as well.  

The aforementioned aspects will link the control room operations simulations to the biometric data 

providing the opportunity to investigate adaptive “human in the loop” automation features, such as 

decision-making support and what real-time impact they have. These features will be defined in 

collaboration with a DCS equipment supplier (Yokogawa) who has a leading role in the committee for 

HMI for the International Society of Automation (ISA). By analysing the data from Yokogawa, the CISC 

project will: 

• Help predict trips and critical scenarios using Bayesian Network (BN) to help decision making 

for a human operator (identify likely root causes for process deviations). Compare data-driven 

BN, expert knowledge and data, and purely expert knowledge BN for online prediction  
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• Finding clusters of alarms to group them  

• Apply reinforcement learning to classify alarms and help identify nuisance alarms and 

reclassify them also in terms of priority in an online setting  

• Provide suggestions on response strategy (controllable variables) using reinforcement 

learning  

• Predict human performance and reliability of human response to critical scenarios  

• Help identify critical information and tasks to support situational awareness (trouble shooting 

strategy procedure and HMI support for them)  

A number of researchers will collaborate on Live Lab 3 as shown in Figure 9. 

 

  

Figure 9: Breakdown of the roles of different researchers in Live Lab 3 
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4.3. Case Study 
The case study developed in collaboration with POLITO, focuses on a simulated chemical plant for the 

production of formaldehyde. The plant produces around 10000 kg/h of 30% formaldehyde solution, 

operating the partial oxidation of methanol with air. For this experiment a simulation of the plant has 

been done with some variations and optimisation. The plant is made of three sections:   

1. Feed section:  the systems here include, two nitrogen flow systems, a methanol tank, a 

methanol pump, a boiler, air and gas compressors, heater, piping, controllers, safety valves, 

indicators.  

2. Heat and recovery section: three heat exchangers 

3. Reaction and Separation Section: a reactor, controllers, alarms, sensor, rupture disk, piping, 

absorber 

Hazardous events (process safety occurrences) considered include: depressurization of the methanol 

tank, air entrance in the methanol tank with the formation of a flammable atmosphere, the reactor 

overheating. The scenarios are broken down according to complexities (normal and abnormal 

situations) within the different plant sections, to vary ‘task load’ as a variable and observe its impact 

on performance alongside other variables as shown in Table 2. 

Table 2: Safety related Scenarios in Live Lab 3 

Section Scenario Assumption Interface/Triggers
/Stimulants 

Operator 

Feed1: 
Nitrogen 
flow  

This scenario simulates a disturbance in the inflow of 
Nitrogen to the methanol tank as a result of a damage 
on one of the valves. Nitrogen is used to pressurize the 
liquid methanol in the storage tank. The hazardous 
event here includes a possible imploding of the tank 
and outflow of methanol. 

Time delays 
switching from 
nitrogen system 1 
to backup or 
switching not 
automated 
 

 

Alarms Goal: Ensure the right flow and 
dosage of Nitrogen and prevent 
hazardous event 
Actions: 
- switch to second nitrogen 

system 
 

Feed2: 
Boiler and 
reactor  
 

One of the possible scenarios here is preventing air 
entrance into the methanol tank and preventing the 
burning of the boiler. Pump/boiler: This could be as a 
result of damage or seal leakage on the methanol 
pump. The boiler continues its operation with an 
absence of fluid. Tank: It could also be a situation that 
already stems from the Nitrogen scenario. In this case 
pressure keep dropping due to unknown damage of 
second system thus triggering the safety valve and 
pressure recovery from atmosphere and emergency 
state activated. Also, potential air entrance to the 
methanol tank. In both cases the plant is out in 
emergency shutdown and possible explosion if ignited 

system 2 does not 
function due to 
issue from lack of 
use 

Pump power 
indication 
Pump level 
indication 
Pump flow 
indicator 
Nitrogen flow 
indicator 
Steam flow 
indicator  
 

Goal: Avoid emergency state 
activation, prevent air 
entrance, prevent the burning 
of boiler. 
Actions: 
Switch to second nitrogen 
system 
Switch pump to manual 
Switch boiler to manual 
Communicate with field 
operator 
Change heater steam flow to 
manual and control it 

Reactor 
and 
separation  
 

A possible scenario here could be the overheating of 
the reactor and the high concentration of oxygen as a 
result of the previous scenario with depressurisation 
of methanol tank causing more %Vol of CO than 
required.  
 

The alarms in the 
feed section are 
active.  
Participants build 
prior knowledge 
from initial 
scenarios 
Pump failure not 
present 
 

Pressure 
controller (reactor 
steam press.) 
CAH05 and 06 
(oxygen and 
methanol 
concentration) 
TAH07, TAHH07, 
D5 rupture disk.  
 

Goal: prevent flammable 
atmosphere and the burning of 
the reactor 
Actions: 
 Switch to second nitrogen 
system 
Switch pump to manual 
Switch boiler to manual 
Communicate with field 
operator 
Pressure controller 
(automation) 
Concentration control 
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4.4. Implementation and Design of Experiments 
The objective of this experiment is to understand the influence the different interactions between 

variables during human-machine and automation interaction have on operator performance and how 

this affects process safety. This would enable opportunities for a more holistic risk-based decision 

making on real-time support adaptation, process control optimisation and management of change 

(resources allocation, etc.) 

There are four key aspects to evaluate and implement collaborative intelligent algorithm to safely 

augment human capabilities in a process control run. achieve this. First, to develop a model for a real 

time assessment of human performance in the context of a Human-machine interaction environment. 

Secondly, the safety data for Human-in loop configuration in process control must be modelled. 

Thirdly, methods for optimal decision-making process in safety-critical systems using Reinforcement 

Learning considering human-in-the-loop setting will be explored. Finally, Bayesian networks will be 

developed to assist human operators and recommend adaptive automation strategies.   

 

Figure 10: Experimental Implementation Plan 

 

The researchers are provided preliminary alarm log data forming the first step in understanding the 

human’s role in the automated system. Initially, the data will be analysed in order to cluster alarms 

this will reduce the overall number of alarms significantly reducing the possibility of cognitive 

overload. The data will then be analysed to investigate whether a trip can be predicted and whether 

a point of no return can be identified. Following from this, the researchers will conduct a set of 

operator interviews which will enable CISC to properly fill the open gaps from the analysis and on the 

data, while drafting a scenario(s) for the next phase of the project.  

Experiments will be performed to test the hypothesis by collecting live data from operators in 

simulation and control room environments.  These tools include graphical interfaces, eye trackers, 

EEGs, post and pre-experimental surveys and video recordings. The following potentially dependent 

variables have been hypothesized and are noted with the evaluation methods,  

• Stress- Video recording, survey, log 

• Trust – Surveys 

• Situational awareness- Survey, Eye tracking 

• Workload - Survey, Eye tracking, EEG, …) 

• Time to complete (log) 

Additionally, the following potentially independent variables have been hypothesized 
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• Interface configurations 

• Stimulants 

• Task complexity 

• Knowledge and Experience 

• Operating procedure 

• Room conditions 

• Demographics 

• Interaction 

Three different experiments will be performed as outlined in Table 3.  

Table 3: Scenarios for Live Lab 3 

Scenario Operator Role Automation 

Normal operation (Task 
complexity level 1) 

Monitoring Active 

Abnormal process safety 
situation (Task complexity level 
1) 

Monitoring and control Active 

Abnormal process safety 
situation (Task complexity level 
1) 

Monitoring and control Disabled 

 

 

 

Figure 11: Schematic for Live Lab 3 experimental setup 
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Figure 12: Live Lab 3 description of proposed experiments at Yokogawa’s facility to monitor human situational awareness 
during alarm event.  



 D5.1. LIVE LABS design of experiments and plans for implementation 

      
 

 

This project has received funding from the European 
Union’s Horizon 2020- MSCA-ITN-2020 under grant 

agreement No. 955901 

 

 

5. Conclusions 
This deliverable contains information about the design of experiments and plans for implementation 

of the Live Labs. Three different Live Labs are proposed that include six different experimental 

scenarios in four different countries. Within all scenarios, humans are central to achieving an optimal 

system performance but until now the human factors are often a neglected component.  

The researchers in the CISC project will be exposed to different problems relevant in diverse industries 

and within various working cultures demonstrating the importance of human centred design. The 

deliverable has outlined a detail design of each experimental setup. Additionally, the preliminary 

approaches which will be taken by the researchers are outlined and hypothesis detailed.  

 

 

  



 D5.1. LIVE LABS design of experiments and plans for implementation 

      
 

 

This project has received funding from the European 
Union’s Horizon 2020- MSCA-ITN-2020 under grant 

agreement No. 955901 

 

References  
 

 (Amin et al. 2020) F. M. Amin, M. Rezayati, H. W. van de Venn, and H. Karimpour, “A mixed-

perception approach for safe human–robot collaboration in industrial automation,” Sensors 

(Switzerland), vol. 20, no. 21, pp. 1–20, Nov. 2020, doi: 10.3390/s20216347 

 (Anvaripour et al. 2020) M. Anvaripour, M. Khoshnam, C. Menon, and M. Saif, “FMG- and 

RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot 

Collaboration,” Front. Robot. AI, vol. 7, Dec. 2020, doi: 10.3389/frobt.2020.573096. 

 (bin Abdul Wahab and Sourin 2021) bin Abdul Wahab, Haziq Yusoff, and Alexei Sourin. 

"Application of Generative Adversarial Networks and Latent Space Exploration in Music 

Visualisation." 2021 International Conference on Cyberworlds (CW). IEEE, 2021. 

 (Buerkle et al. 2021a) A. Buerkle, W. Eaton, N. Lohse, T. Bamber, and P. F. Wolfson, “EEG based 

arm movement intention recognition towards enhanced safety in symbiotic Human-Robot 

Collaboration,” Robot. Comput. Integr. Manuf., vol. 70, Aug. 2021, doi: 

10.1016/j.rcim.2021.102137. 

 (Büttner et al. 2017) S. Büttner, P. Wunderlich, M. Heinz, O. Niggemann, and C. Röcker, 

“Managing complexity: Towards intelligent error-handling assistance trough interactive alarm 

flood reduction,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 

Notes Bioinformatics), vol. 10410 LNCS, pp. 69–82, 2017, doi: 10.1007/978-3-319-66808-6_6 

(Cai et al. 2018)  Cai, Baoping, Xiangdi Kong, Yonghong Liu, Jing Lin, Xiaobing Yuan, Hongqi 

Xu, and Renjie Ji. "Application of Bayesian networks in reliability evaluation." IEEE 

Transactions on Industrial Informatics 15, no. 4 (2018): 2146-2157. 

(Casalino et al. 2019) A. Casalino, A. Brameri, A. M. Zanchettin, and P. Rocco, “Adaptive swept 

volumes generation for human-robot coexistence using Gaussian Processes,” in IEEE 

International Conference on Intelligent Robots and Systems, 2019, pp. 3823–3829, doi: 

10.1109/IROS40897.2019.8967807 

(Cesta et al. 2018)  A. Cesta, A. Orlandini, and A. Umbrico, “Fostering Robust Human-Robot 

Collaboration through AI Task Planning,” in Procedia CIRP, 2018, vol. 72, pp. 1045–1050, doi: 

10.1016/j.procir.2018.03.022. 

(Chao et al. 2021) Chao, A.: Manuel. et al. "Aircraft Engine Run-to-Failure Dataset under Real 

Flight Conditions for Prognostics and Diagnostics 6, 1 (2021)  

(Comberti et al. 2018) Comberti, L., Demichela, M., & Leva, M. C. A multi-discipline method to 

assess the human performance in manufacturing industry for safety and quality optimization. 

In Safety and Reliability–Safe Societies in a Changing World (pp. 381-386). CRC Press. (2018). 

 (Dehais et al. 2020)  Dehais et al., “A Neuroergonomics Approach to Mental Workload, 

Engagement and Human Performance”, 2020 



 D5.1. LIVE LABS design of experiments and plans for implementation 

      
 

 

This project has received funding from the European 
Union’s Horizon 2020- MSCA-ITN-2020 under grant 

agreement No. 955901 

 

 (Driggs-Campbell and Bajcsy 2015) K. Driggs-Campbell and R. Bajcsy, “Identifying Modes of 

Intent from Driver Behaviors in Dynamic Environments,” in IEEE Conference on Intelligent 

Transportation Systems, Proceedings, ITSC, 2015, vol. 2015-Octob, pp. 739–744, doi: 

10.1109/ITSC.2015.125. 

 (Elmalaki 2021) S. Elmalaki, “FaiR-IoT: Fairness-Aware Human-in-the-Loop Reinforcement Learning 

for Harnessing Human Variability in Personalized IoT,” in Proceedings of the International 

Conference on Internet-of-Things Design and Implementation, 2021, pp. 119–132, doi: 

10.1145/3450268.3453525. 

 (El-Shamouty et al. 2020) M. El-Shamouty, X. Wu, S. Yang, M. Albus, and M. F. Huber, 

“Towards Safe Human-Robot Collaboration Using Deep Reinforcement Learning,” in 2020 

IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp. 4899–4905, 

doi: 10.1109/ICRA40945.2020.9196924 

(Fang and Yuan 2020) J. Fang and Y. Yuan, “Human-in-the-loop optimization of wearable robots to 

reduce the human metabolic energy cost in physical movements,” Rob. Auton. Syst., vol. 127, 

May 2020, doi: 10.1016/j.robot.2020.103495. 

 (Gomez Cubero et al. 2021) C. Gomez Cubero and M. Rehm, “Intention Recognition in Human 

Robot Interaction Based on Eye Tracking,” Lect. Notes Comput. Sci. (including Subser. Lect. 

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12934 LNCS, pp. 428–437, 2021, doi: 

10.1007/978-3-030-85613-7_29. 

 (Guo et al. 2018) M. Guo, S. Andersson, and D. V Dimarogonas, “Human-in-the-Loop Mixed-

Initiative Control Under Temporal Tasks,” in 2018 IEEE International Conference on Robotics 

and Automation (ICRA), May 2018, pp. 6395–6400, doi: 10.1109/ICRA.2018.8460793 

(Hoc 2000)  Hoc, J.M., “From human – machine interaction to human – machine cooperation,” 

Ergonomics, vol. 43, no. 7, pp. 833–843, 2000, doi: 10.1080/001401300409044. 

 (Johari et al. 2021) K. Johari, C. T. Z. Tong, V. Subbaraju, J. J. Kim, and U. X. Tan, “Gaze Assisted 

Visual Grounding,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 

Notes Bioinformatics), vol. 13086 LNAI, pp. 191–202, 2021, doi: 10.1007/978-3-030-90525-

5_17 

 (Kelleher et al. 2020)  Kelleher, John D., Brian Mac Namee, and Aoife D'arcy. Fundamentals of 

machine learning for predictive data analytics: algorithms, worked examples, and case 

studies. MIT press, 2020. 

 (Kjærulff and Madsen 2013) Kjærulff, Uffe Bro, and Anders Læsø Madsen. "Bayesian Networks 

and Influence Diagrams: A Guide to Construction and Analysis." (2013). 

(Leva et al. 2016) Leva, M. C., Alunni, C. C., Demichela, M., & Allemandi, G.  “Addressing 

human performance in automotive industry: identifying main drivers of human reliability”. 

Irish Ergonomics Society, 18 (2016). 



 D5.1. LIVE LABS design of experiments and plans for implementation 

      
 

 

This project has received funding from the European 
Union’s Horizon 2020- MSCA-ITN-2020 under grant 

agreement No. 955901 

 

(Leva et al. 2022) Leva, M. C., Demichela, M., Comberti, L., & Caimo, A. (2022). Human 

performance in manufacturing tasks: Optimization and assessment of required workload and 

capabilities. Safety Science, 154, 105838. 

 (Lin 2020) H. I. Lin, “Design of an intelligent robotic precise assembly system for rapid teaching 

and admittance control,” Robot. Comput. Integr. Manuf., vol. 64, 2020, doi: 

10.1016/j.rcim.2020.101946. 

(Liu and Zhou 2020) Liu, Zhiyuan, and Jie Zhou. "Introduction to graph neural networks." 

Synthesis Lectures on Artificial Intelligence and Machine Learning 14.2 (2020): 1-127. 

(Liu et al. 2016) C. Liu et al., “Goal inference improves objective and perceived performance in 

human-robot collaboration,” in Proceedings of the International Joint Conference on 

Autonomous Agents and Multiagent Systems, AAMAS, 2016, pp. 940–948 

(Lombardi et al. 2019) M. Lombardi, D. Liuzza, and M. DI Bemardo, “Deep learning control of 

artificial avatars in group coordination tasks,” in Conference Proceedings - IEEE International 

Conference on Systems, Man and Cybernetics, 2019, vol. 2019-Octob, pp. 714–719, doi: 

10.1109/SMC.2019.8914294. 

(Luo and Mai 2019) R. C. Luo and L. Mai, “Human Intention Inference and On-Line Human Hand 

Motion Prediction for Human-Robot Collaboration,” in IEEE International Conference on 

Intelligent Robots and Systems, 2019, pp. 5958–5964, doi: 10.1109/IROS40897.2019.8968192 

 (Ma et al. 2016) Y. Ma et al., “Driving drowsiness detection with EEG using a modified 

hierarchical extreme learning machine algorithm with particle swarm optimization: A pilot 

study,” Electron., vol. 9, no. 5, 2020, doi: 10.3390/electronics9050775 

(Maderna et al. 2019) R. Maderna, P. Lanfredini, A. M. Zanchettin, and P. Rocco, “Real-time 

monitoring of human task advancement,” in IEEE International Conference on Intelligent 

Robots and Systems, 2019, pp. 433–440, doi: 10.1109/IROS40897.2019.8967933 

(Mkrtchyan et al. 2015) Mkrtchyan, Lusine, Luca Podofillini, and Vinh N. Dang. "Bayesian belief 

networks for human reliability analysis: A review of applications and gaps." Reliability 

engineering & system safety 139 (2015): 1-16. 

 (Rigter et al. 2020) M. Rigter, B. Lacerda, and N. Hawes, “A Framework for Learning from 

Demonstration with Minimal Human Effort,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2023–

2030, 2020, doi: 10.1109/LRA.2020.2970619 

(Rodrigues et al. 2022) I. R. Rodrigues et al., “Modeling and assessing an intelligent system for 

safety in human-robot collaboration using deep and machine learning techniques,” 

Multimed. Tools Appl., vol. 81, no. 2, pp. 2213–2239, Jan. 2022, doi: 10.1007/s11042-021-

11643-z 

 (Roveda et al. 2019) L. Roveda, S. Haghshenas, M. Caimmi, N. Pedrocchi, and L. M. Tosatti, 

“Assisting operators in heavy industrial tasks: On the design of an optimized cooperative 



 D5.1. LIVE LABS design of experiments and plans for implementation 

      
 

 

This project has received funding from the European 
Union’s Horizon 2020- MSCA-ITN-2020 under grant 

agreement No. 955901 

 

impedance fuzzy-controller with embedded safety rules,” Front. Robot. AI, vol. 6, Aug. 2019, 

doi: 10.3389/frobt.2019.00075. 

 (Singh and Mahmoud 2020) H. V. P. Singh and Q. H. Mahmoud, “Human-in-the-Loop Error 

Precursor Detection using Language Translation Modeling of HMI States,” in Conference 

Proceedings - IEEE International Conference on Systems, Man and Cybernetics, Oct. 2020, vol. 

2020-Octob, pp. 2237–2242, doi: 10.1109/SMC42975.2020.9283392 

 (Wilson and Daugherty 2018)  H. J. Wilson and P. R. Daugherty, “How Humans and AI Are Working 

Together in 1,500 Companies,” Harvard Business Review, 2018. 

https://hbr.org/2018/07/collaborative-intelligence-humans-and-ai-are-joining-forces 

(accessed May 20, 2022). 

 (Yan et al 2022)  Yan, Shengyuan, Kai Yao, Fengjiao Li, Yingying Wei, and Cong Chi Tran. 

"Application of a Bayesian network to quantify human reliability in nuclear power plants 

based on the SPAR-H method." International journal of occupational safety and ergonomics 

(2022): 1-11. 

(Yang et al. 2020) X. Yang and N. Michael, “Assisted mobile robot teleoperation with intent-

aligned trajectories via biased incremental action sampling,” IEEE Int. Conf. Intell. Robot. 

Syst., pp. 10998–11003, 2020, doi: 10.1109/IROS45743.2020.9341514. 

 (Zanchettin et al. 2019) A. M. Zanchettin, A. Casalino, L. Piroddi, and P. Rocco, “Prediction of Human 

Activity Patterns for Human-Robot Collaborative Assembly Tasks,” IEEE Trans. Ind. 

Informatics, vol. 15, no. 7, pp. 3934–3942, 2019, doi: 10.1109/TII.2018.2882741 

 (Zhang et al. 2016) X. Zhang, Y. Zhu, and H. Lin, “Performance guaranteed human-robot 

collaboration through correct-by-design,” in 2016 American Control Conference (ACC), Jul. 

2016, pp. 6183–6188, doi: 10.1109/ACC.2016.7526641 

(Zhang et al. 2020) X. Zhang, S. Mahadevan, N. Lau, and M. B. Weinger, “Multi-source 

information fusion to assess control room operator performance,” Reliab. Eng. Syst. Saf., vol. 

194, Feb. 2020, doi: 10.1016/j.ress.2018.10.012 


