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ABSTRACT 
In complex industrial and chemical process control rooms, effective decision-making is crucial for 
safety and efficiency. The experiments in this paper evaluate the impact and applications of an AI- 
based decision support system integrated into an improved human-machine interface, using 
dynamic influence diagrams, a hidden Markov model, and deep reinforcement learning. The 
enhanced support system aims to reduce operator workload, improve situational awareness, and 
provide different intervention strategies to the operator adapted to the current state of both the 
system and human performance. Such a system can be particularly useful in cases of information 
overload when many alarms and inputs are presented all within the same time window, or for 
junior operators during training. A comprehensive cross-data analysis was conducted, involving 47 
participants and a diverse range of data sources such as smartwatch metrics, eye-tracking data, 
process logs, and responses from questionnaires. The results indicate interesting insights regarding 
the effectiveness of the approach in aiding decision-making, decreasing perceived workload, and 
increasing situational awareness for the scenarios considered. Additionally, the results provide 
insights to compare differences between styles of information gathering when using the system 
by individual participants. These findings are particularly relevant when predicting the overall per-
formance of the individual participant and their capacity to successfully handle a plant upset and 
the alarms connected to it using process and human-machine interaction logs in real-time which 
resulted in a 95.8% prediction accuracy using hidden Markov model. These predictions enable the 
development of more effective intervention strategies.
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the-loop AI; AI-based 
recommendation system; 
deep reinforcement 
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1. Introduction

In today’s complex industrial setting and chemical process 
control rooms, operators frequently encounter complex situa-
tions demanding rapid and precise decision-making. The 
Human-Machine Interface (HMI) can overwhelm operators 
with excessive information, leading to information overload 
and potentially compromising their ability to respond effect-
ively, thus increasing the likelihood of human errors. To 
address this challenge, there is a need for a decision support 
framework to assist operators in detecting and responding to 
potential safety incidents. In this context, we present the results 
of an experimental study in this paper to assess the effectiveness 
of an improved AI-based recommendation system in address-
ing information overload and mitigating process abnormalities.

In this study, we evaluate the impact of an AI decision 
support system (DSS) on control room operators, focusing 

on workload reduction and situational awareness enhance-
ment through an integrated HMI that includes screen-based 
procedures and an AI-based recommendation system. This 
system employs a dynamic influence diagram coupled with 
reinforcement learning to detect anomalies and provide 
operators with relevant, dynamically updated procedures. 
We conduct a simulation involving formaldehyde produc-
tion where participants (Figure 1) respond to various scen-
arios, either assisted by the DSS or not, to assess the 
effectiveness of the AI-enhanced recommendation system. 
The presentation of the procedures to the operators is a crit-
ical aspect of this research. Providing operators with simpli-
fied procedures that adapt to the current state of the system 
has shown promising results in assisting their work. This 
system’s interpretability and basis in expert knowledge are 
enhanced through the collaboration between the influence 
diagram and reinforcement learning. Such a system holds 
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particular advantages for operators dealing with information 
overload and junior operators.

Our comprehensive evaluation strategy includes both sub-
jective and objective measurements such as questionnaires, 
response times, heart rate, temperature, electrodermal activ-
ity (EDA), and eye-tracking metrics. Workload is assessed 
using the NASA Task Load Index (NASA-TLX), along with 
physiological measurements, to determine the mental, phys-
ical, and temporal demands on operators. Situational aware-
ness is evaluated using the Situation Awareness Rating 
Technique (SART) and the Situation Presence Assessment 
Method (SPAM), which help quantify the operator’s under-
standing and projection of future states. Performance met-
rics, including response time and accuracy, determine the 
DSS’s effectiveness in aiding decision-making and task exe-
cution. Additionally, trust in the DSS is gauged through 
questionnaires to assess operators’ confidence in the AI sys-
tem, crucial for its acceptance and operational success.

Our findings suggest that while the DSS significantly 
improves performance and reduces workload, there is a poten-
tial for reduced situational awareness and an over-reliance on 
the system, which could impact safety and decision-making. 
Correlation studies and factor analysis are used to simplify the 
interpretation of complex data sets and to understand the rela-
tionships between variables. This holistic evaluation strategy 
not only validates the system’s effectiveness but also highlights 
areas for improvement, ensuring the enhanced AI-based rec-
ommendation system can optimally support operators in man-
aging industrial processes safely and effectively.

Furthermore, to gain insights into human behavior and 
their intervention approach the analysis is performed within 
the participants of the group that is provided with the AI- 
enhanced decision support system. The cross-analysis com-
pares the perception level and intervention ability of the 
participant based on the source they target to gain informa-
tion about the system such as the screen procedures, 
AI-based decision support, or both. Moreover, we explore 
human failure prediction in real time by analyzing process 
variables and human-machine interaction data. This 
approach aims to identify potential errors before they occur, 
thereby enhancing the overall safety and efficiency of 
operations

Furthermore, the outcomes from these experiments and a 
survey (Amazu et al. (2023)), which involved experts and 

stakeholders who might engage with the developed support 
system led to the development of an extension of the 
dynamic influence diagram-based reinforcement learning 
framework. The focus is on proposing a Human-in-the-Loop 
(HITL) hierarchical framework for interpretable, specialized, 
and safe Deep Reinforcement Learning (DRL) that can be 
employed in real-world safety-critical industries. This 
extended framework aims to predict the plant’s state during 
process abnormalities from human-machine interaction and 
process logs, enabling improved intervention strategies. 
Therefore, it can be used as a decision support tool during 
the training of junior operators, but also as a co-pilot to sup-
port even experienced operators in situations where there are 
too many alarms all arriving in the same time window. The 
tool can further take up the role of taking over control and 
requesting approval to automate the recovery process.

The paper is structured as follows: In Section 2, we delve 
into the related work, outlining the contributions of this 
paper. Moving on to Section 3, we define the framework 
used for the AI-enhanced decision support system in the 
experiments and its extended version for future enhance-
ments. In Section 4, we present the formulated case study, 
which serves as the basis for data collection and analysis. 
The data collection process and details of the collected data 
are discussed in Section 5. Subsequently, Section 6 conducts 
an in-depth analysis of the data, making comparisons 
between groups and within participants for the AI-supported 
group. Finally, in Section 7, we validate the extended frame-
work using results from the experiments and elucidate its 
application capabilities.

2. Related work and contributions

The review article by Sethu et al. (2023) emphasizes AI’s 
potential to assist operators in making precise and swift 
decisions, thereby enhancing the safety of nuclear energy 
production. They also investigate various causes of human 
errors in nuclear power plants and assess how AI has been 
integrated into various operator support systems to address 
these errors. Eight specific types of support systems are 
examined, including decision support, sensor fault detection, 
operation validation, operator monitoring, autonomous con-
trol, predictive maintenance, automated text analysis, and 
safety assessment systems. Highlighting the significance of 
human-autonomous system interactions in ensuring plant 
system performance and reliability, the review addresses 
various human factors-related issues identified in the litera-
ture. The authors argue that a crucial gap exists in integrat-
ing the HITL strategy with both black-box models, such as 
Deep Neural Networks (DNN), and the white-box approach 
involving probabilistic modeling.

The authors in Lee et al. (2007); Wu and Li (2018) also 
discuss the importance of preventing human errors and a 
review of alarm system design in nuclear power plants. They 
propose an enhanced control room interface design and 
decision support system to enhance operational perform-
ance. Their methodology involves analyzing operators’ cog-
nitive activities, resulting in the development of two 

Figure 1. Case study: simulated control room environment of a process indus-
try for a living lab.

2 A. N. ABBAS ET AL.



decision support systems for fault diagnosis and operation 
validation.

The authors in Kang and Lee (2022) propose a frame-
work, designed to improve initial emergency responses in 
nuclear power plants. The framework aims for agile, 
dynamic, and intuitive operation, seeking to reduce response 
time and operator workload through automation and real- 
time risk assessment. Scenario tests demonstrate a 95% 
reduction in tasks and improved efficiency. Despite these 
positive results, the authors acknowledge limitations such as 
the reliance on rule-based logic, the importance of rigorous 
effectiveness verification, and the system’s narrow focus on 
early-stage emergencies. As the system is framed on rule- 
based logic, therefore, it does not take into account the 
uncertainties involved in the environment and needs to 
reiterate the rules over time to adapt to the changing 
environment.

The experiments presented in Hsieh et al. (2012) focus 
on a decision support system designed for identifying abnor-
mal operating procedures in nuclear power plants. The 
study involved 32 graduate students with backgrounds simi-
lar to new nuclear power plant operators. After undergoing 
training and qualification tests, participants utilized the sup-
port system in a formal experiment. The results showed that 
the support system significantly reduced errors by 25%, 
decreased decision-making time by 25%, and increased deci-
sion accuracy by 18%. Operators using the system made 
fewer erroneous decisions, experienced reduced mental 
workload, and demonstrated a preference for the support 
system. The study also highlighted the importance of avoid-
ing information overload to maintain decision quality. As a 
recommendation, the developed decision support system is 
suggested as a valuable training tool, offering enhanced per-
formance and reducing mental burden for operators.

An experimental study was performed in Balaji et al. 
(2023), where the authors discussed the challenges faced by 
human operators in process industries and explored the 
potential of using a digital twin to enhance their perform-
ance. The authors introduced a cognitive architecture using 
eye tracker data that can be used to create a human digital 
twin and explained how it could be applied to process 
industries. They evaluated its performance by comparing it 
to control room operators in a disturbance rejection task, 
involving 11 participants. The authors collected process 
data, operator actions, and eye-tracking data. The results 
showed that the human digital twin’s performance was gen-
erally in agreement with that of human operators. The 
digital twin successfully diagnosed the cause of the abnor-
mality and initiated necessary control actions. It focused on 
areas directly related to the disturbance and employed a 
proactive monitoring strategy using the trend of the process 
variables.

Authors in Ghosh and Bequette (2019) provide a compre-
hensive overview of the integration of HITL systems, par-
ticularly focusing on the concept of Smart Control Rooms 
(SCRs) to address the complexities of human-machine inter-
actions and enhance overall system performance. The frame-
work emphasizes the significance of incorporating human 

factors and cognitive science in decision-making processes 
within industrial settings. They highlight the fact that the 
integration of human factors in chemical process manufac-
turing has been relatively slow compared to other industries.

Hierarchical Reinforcement Learning (HRL) offers a 
structured approach to address the challenges of transferring 
knowledge at temporal abstractions between task hierarchies 
in deep reinforcement learning (Botvinick (2012)). HRL 
allows the agent to make decisions at multiple levels of tem-
poral abstractions instead of single-level decision-making. 
This helps RL agents to focus on local problems and opti-
mize towards the global objective efficiently. Pateria et al. 
(2021) survey HRL methods, categorizing them into classes 
addressing hierarchical policies, subtask discovery, transfer 
learning, and multi-agent learning. HRL research can gener-
ally be characterized into broad branches, (i) Feudal and (ii) 
Option. Feudal presents a “manager and sub-manager” hier-
archy, whereas option relates to implementing a specific RL 
model for the given situation. The proposed architecture 
incorporates the strengths of both approaches in terms of 
having a higher abstraction model as feudal RL using the 
probabilistic approach and in other ways having option RL 
for choosing the correct RL model for the autonomously 
identified states as well as providing interpretations for the 
given action or the given identification of the state. In the 
options architecture (Stolle and Precup (2002); Bacon et al. 
(2017)), the Markov Decision Process (MDP) is divided into 
sub-policies that make it a Semi-MDP. Semi-MDPs are par-
ticularly useful for modeling problems where the duration of 
states or transitions is important. This architecture introdu-
ces temporal abstraction in states and activates a particular 
sub-policy when a particular state is observed. In this 
research, the proposed framework is inspired by the HRL 
framework, however, to make the policy more transparent 
and interpretable the use of white-box probabilistic model-
ing is used to determine options and specialize the DRL 
agents similar to the prior studies discussed in Abbas et al. 
(2022b, 2023, 2024).

2.1. Contributions

This paper contributes by conducting an exploratory data 
analysis on experiments carried out within a simulated con-
trol room environment. The specific focus is on comparing 
two groups: one utilizing an AI-enhanced decision support 
system based on dynamic influence diagrams and reinforce-
ment learning (RL), and the other not using such a system. 
Additionally, we delve into the analysis of human decision- 
making preferences for the group using the AI-enhanced 
decision support system and their associated consequences. 
Moreover, our paper addresses a significant gap in the exist-
ing literature by investigating the synergies among various 
models and the impact of a HITL AI-enhanced decision 
support framework, specifically integrating dynamic influ-
ence diagrams, a hidden Markov model, and Deep RL 
(DRL). We leverage DRL for its adept handling of uncer-
tainties and adaptability to dynamic environments. The 
objective is to incorporate human states and actions to 
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enhance decision-making interventions. In contrast to prior 
research, our proposed framework uniquely emphasizes 
automated intervention strategies and decision-support con-
trols during process abnormalities. This automation is trig-
gered when the system identifies increased task loads for 
humans or predicts a high probability of human failure dur-
ing abnormal situations. While our current research paper 
does not explicitly delve into the creation of a human digital 
twin, it lays the groundwork for such advancements. The 
results presented here serve as a foundation for further 
enhancements in the framework.

3. Framework

3.1. Preliminaries

The AI-based recommendation system leverages DRL and a 
dynamic influence diagram. DRL is employed in an online 
setting, where it learns through interaction with the environ-
ment and observation of process behavior based on its 
actions. The dynamic influence diagram is constructed using 
expert knowledge, which includes the physical equations 
governing the behavior of the system components. These 
two models are combined to detect deviations in the process 
and provide the operator with precise recommendations, 
along with specific values tailored to the current 
circumstances.

3.1.1. Dynamic influence diagram (DID)
A dynamic influence diagram (DID) (Howard and 
Matheson (2005); Tatman and Shachter (1990)) is a graph-
ical decision analysis tool that extends traditional influence 
diagrams by incorporating a time dimension. DIDs repre-
sent decision problems through nodes such as decision, 
chance, and value nodes, connected by directed arcs that 
illustrate causal relationships and dependencies. The inclu-
sion of a time element allows the modeling of evolving sys-
tems. Key components include utility functions, decision 
rules, and applying probabilistic links to account for uncer-
tainty. DIDs enable scenario and sensitivity analysis, offering 
insights into decision-makers’ strategies and the robustness 
of outcomes. The use of a dynamic influence diagram within 
this framework and experiment is described in detail by 
authors in Mietkiewicz et al. (2023, 2024). The definition of 
an influence diagram is as follows:

Definition 1. Discrete Limited Memory Influence Diagram 
(Kjærulff and Madsen (2007))

Given an influence diagram denoted as N ¼ ðX, G, P, UÞ, 
it comprises the following components:

i. A Directed Acyclic Graph (DAG) G ¼ ðV , EÞ, where V 
represents the set of nodes and E is the set of directed 
edges, indicating dependency relations and information 
flow.

ii. A collection of discrete random variables XC and deci-
sion variables XD, such that the total set of variables X 

is the union of these two sets, i.e., X ¼ XD [ XC. These 
variables are represented by the nodes in G.

iii. A set of conditional probability distributions P, where 
each distribution PðXvjXpaðvÞÞ is associated with a dis-
crete random variable Xv given its parent variables 
XpaðvÞ in the graph.

iv. A set of utility functions U, with each utility function 
uðXpaðvÞÞ associated with a node v in the subset of utility 
nodes VU � V:

To determine the decision option with the highest 
expected utility, we calculate the expected utility for each 
decision alternative. Let A be a decision variable with 
options a1, :::, am, H a hypothesis with states h1, :::, hn, and 
� a set of observations as evidence. The probability of each 
hypothesis outcome hj and the expected utility of each 
action ai can be computed. The utility for an outcome 
ðai, hjÞ is denoted as Uðai, hjÞ, where Uð�Þ is the utility func-
tion. The expected utility for action ai is given by:

EUðaiÞ ¼
Xn

j¼1
Uðai, hjÞ � Pðhjj�Þ (1) 

Here, Pð�Þ represents the belief in hypothesis H given evi-
dence �: The utility function Uð�Þ quantifies the decision 
maker’s preferences numerically. The optimal decision is 
made using the principle of maximum expected utility, 
selecting an option a� such that:

a� ¼ argmaxai2A EUðaiÞ (2) 

Dynamic influence diagrams extend traditional influence 
diagrams by incorporating discrete time elements, effectively 
creating a time-sliced model. This approach involves repli-
cating a static network structure across multiple time slices, 
where each slice represents the system at a specific point in 
time. The progression of the system over time is captured 
through connections between variables across these different 
time slices. Essentially, a dynamic model can be visualized 
as a series of static models placed sequentially, each depict-
ing the system at a distinct time step. The links between 
these time steps illustrate the impact of the system’s past 
state on its present state. In our experiment, we utilized a 
finite horizon dynamic influence diagram, which means our 
model was designed to consider a specific, limited number 
of time steps into the future.

3.1.2. Deep reinforcement learning
Deep Reinforcement Learning (DRL) (François-Lavet et al. 
(2018)) combines deep neural networks with reinforcement 
learning, offering an approach for training to make sequen-
tial decisions in complex and dynamic settings. In process 
control and its optimization, where traditional control tech-
niques may struggle to address the complexities and uncer-
tainties inherent in real-world processes, DRL has proven to 
be beneficial (Spielberg et al. (2020)). Mathematically, 
reinforcement learning involves Markov Decision Processes 
(MDPs), where an agent interacts with an environment by 
taking actions based on its current state, receiving rewards, 
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and updating its policy to maximize cumulative future 
rewards. The Q-value function, denoted as Q(s, a), repre-
sents the expected cumulative reward of taking action “a” in 
state “s” and following the optimal policy thereafter. The 
Bellman equation, a fundamental concept in reinforcement 
learning, expresses the recursive relationship between Q-val-
ues. Authors in Abbas et al. (2022a) have delved into the 
application of DRL in the process control environment.

Qðs, aÞ ¼ E r þ c max
a0

Qðs0, a0Þjs, a
h i

(3) 

3.1.2.1. Twin delayed deep deterministic policy gradient 
(TD3) architecture. Twin Delayed DDPG (TD3) architecture 
was proposed by Fujimoto et al. (2018) to tackle challenges 
like overestimation bias. TD3 serves as the foundational 
DRL architecture in our framework, incorporating twin Q- 
value estimators to alleviate overestimation errors and a 
delayed policy update mechanism for stabilizing the learning 
process. The TD3 algorithm follows the actor-critic 
approach, where the actor decides and the critic evaluates 
the policy.

3.1.2.2. Critic update. 

LðhQÞ ¼ Eðs, a, r, s0Þ�D
1
2
ðQ1-targetðs, aÞ − yÞ2

� �

(4) 

y ¼ r þ cð1 − dÞmin
i¼1, 2

Qi-targetðs
0, ptarget ðs0ÞÞ (5) 

3.1.2.3. Actor update. 

LðhpÞ ¼ −Es�D Q1ðs, pðsÞÞ½ � (6) 

3.1.2.4. State. Within the framework of a Partially 
Observable Markov Decision Process, relying solely on the 
observed state may be insufficient due to inherent partial 
observability constraints. To overcome this challenge, our 
research employs a tuple consisting of the history of expert 
actions concatenated with the history of process variables. 
This history extends up to a length denoted as “l,” as illus-
trated in Equation (7). The selected historical information 
includes the current state at time “t” and the preceding tra-
jectory at time “t − 1.”

st :¼
�

yt−l, aE
t−l−1

� �
, :::, yt , aE

t−1
� ��

(7) 

3.1.2.5. Action. In the context of the TD3 architecture, the 
actor-network outputs a continuous action parameterized by 
a neural network. The actor’s output is denoted as:

phðsÞ ¼ lðsÞ (8) 

Here, lðsÞ is the deterministic policy function, represent-
ing the mean of the distribution over the continuous action 
space.

3.1.2.6. Reward. In a disturbance rejection scenario, the 
agent seeks to determine an optimal policy that minimizes 
tracking error and stabilizes the process while deviating 
minimally from the optimal set point. This objective is 

incorporated into the DRL agent through a reward function 
(r) or a cost function (−r), such as the negative l1-norm of 
the set-point error, as expressed in Equation (9).

r st , aA
t , stþ1

� �
¼ −

Xmy

i¼1
yi, t − yi, sp
�
�

�
� (9) 

3.1.3. Specialized reinforcement learning agent
A Specialized Reinforcement Learning Agent (SRLA) inte-
grates the strengths of probabilistic modeling and DRL as 
shown in Figure 2, proposed in Abbas et al. (2024). SRLA 
enables the DRL agent to specialize in specific scenarios 
within the environment, particularly in cases involving pro-
cess abnormalities. This specialization enhances training effi-
ciency and reduces the need for excessive data. In the 
associated figure, PðstÞ denotes the probability of a particular 
state, x�ðstÞ signifies the specialized state where the DRL 
agent is activated, and the system state S is filtered to extract 
information about that specific state. The recommended 
optimal control strategy p is then presented to the operator. 
An instantiation of the framework was adapted for a case 
study in process control and optimization, as presented in 
Abbas et al. (2023). The actor and critic updates are modi-
fied as shown in Equation (10) where s� ¼ desired state 
identified through the probabilistic model.

L�A hpð Þ ¼ −Q s�, aE þ aA s�jhpð Þ
� �

jhQ
� �

(10) 

L�Q hQð Þ ¼
1
2

R − Q s� , aE þ aA s�jhpð Þ
� �

jhQ
� �� �2 

Furthermore, the framework was extended as an AI- 
enhanced recommendation system for process control, 
where a Multi-Specialized Reinforcement Learning Agent 
(M-SRLA) configuration was employed. In this setting, mul-
tiple agents operate independently, with only a specific agent 
activated to offer the optimal control strategy when a pro-
cess abnormality is detected through the influence diagram 
as presented by Mietkiewicz et al. (2023).

3.1.4. Hidden Markov model (HMM)
The Hidden Markov Models (HMMs) (Rabiner (1989)) are 
probabilistic models widely used for modeling sequential 
data in diverse fields. They consist of a set of hidden states, 

Figure 2. Specialized reinforcement learning agent (SRLA). Source: Abbas et al. 
(2024).
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each associated with a probability distribution over observ-
able outcomes. The transitions between hidden states are 
governed by probabilities, and at each state, an observation 
is emitted based on another probability distribution. HMMs 
are characterized by their ability to capture temporal 
dependencies. A similar hybrid approach of combining 
HMM with DRL was used by authors in Abbas et al. 
(2022b) and Abbas et al. (2023), where the sole purpose of 
HMM was to provide separate the state space into normal 
and abnormal states as well as to provide interpretations for 
the root cause of failure. In our proposed framework HMMs 
(Lee (2023)) are used in a similar context to predict the 
human failure in process abnormality states.

3.1.4.1. State transitions. 

Pðqtjqt−1Þ (11) 

where Pðqtjqt−1Þ represents the transition probability from 
state qt−1 to qt:

3.1.4.2. Emission probabilities. 

PðxtjqtÞ (12) 

where PðxtjqtÞ represents the emission probability of obser-
vation xt given state qt:

3.1.4.3. Hidden state prediction. Given the current state qt−1, 
the observation sequence x1, x2, :::, xt−1 up to time t − 1, and 
the model parameters h (initial, transition, and emission prob-
abilities) the predicted probability distribution for the next 
state qt is given by:

Pðqtjx1, x2, :::, xt−1, hÞ (13) 

3.2. Human-centered specialized RL decision support 
framework for safety-critical systems

In this paper we build upon the previous framework 
(Mietkiewicz et al. (2023)) and introduce an extended ver-
sion as shown in Figure 3 that incorporates a HITL setup. 
As shown in the figure, the process variables are used as the 
input for DID and HMM. Furthermore, the confidence 
threshold from DID adds an extra layer of safety to the 
DRL suggestion. If the suggested control falls outside this 
threshold, it is not presented to the operator; instead, only 
the interval is suggested. The DID identifies the process 
abnormality, and based on this identification, the DRL agent 
specialized for that specific abnormality is activated to sug-
gest control values. The proposed framework additionally 
captures the human state prediction in real-time by the use 
of the HMM on the data from process, alarms, and HMI 
logs, which provide information on the process variables as 

Process ControlHuman

Recommended Control
Value or Interval

Deep Reinforcement Learning
(DRL2)DRL1 DRL3

Process Variables

Dynamic Influence Diagram

Process AbnormalityIden fica on

Hidden Markov Model

Confidence Interval

Training
Decision Support to Operator

Decision Support to Supervisor
SRLA-Based Valida on

SRLA Control
Process, Alarms, and HMI-

Logs

Interven on
Strategy

Recommended Control
ValueVV or Interval

Deep Reinforcement Learning
(DRL2(DRL(DRL )DRL1 DRL3DRLDRL

Process Variables

Dynamic Influence Diagram

Process AbnormalityIden fica on Confidence Interval

Figure 3. Human-centered specialized reinforcement learning agent for safety-critical systems. The dashed area represents the framework developed in Mietkiewicz 
et al. (2023, 2024).
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well as the human interaction with the process. This frame-
work further increases the capabilities in terms of the inter-
vention strategies based on HMM prediction, such as using 
it during the operator’s training, decision support for the 
operator or supervisor, operator action validation, and 
requesting automating of the intervention through DRL. 
Finally, based on the decision support from DID, DRL, and 
HMM, the human operator makes the final decision that is 
implemented in process control.

The methodology involves utilizing an influence diagram 
to locate specific failures within the system globally. Once 
the failure-associated procedure is identified, the relevant 
step of the procedure is presented to the operator based on 
the current situation. In cases where the procedure requires 
the manual adjustment of a controller with continuous val-
ues, locally specialized DRL is activated to determine the 
appropriate value, considering the current state of the sys-
tem. One additional safety barrier that we introduce for 
using such a black-box system in safety-critical industries is 
that the exact continuous value is only suggested to the 
operator if it is found within the confidence interval of the 
DID. The influence diagram, due to data discretization, pro-
vides a value in the form of an interval. If the value derived 
from DRL falls outside this interval, only the procedure, 
along with the interval, is presented to the operator. This 
precaution is taken to ensure the interpretability and safety 
of the overall system. In summary, the influence diagram 
serves to model the system globally, while reinforcement 
learning precisely addresses local issues.

Furthermore, the HMM is introduced at the final layer 
between the human and the recommended control value 
that determines different intervention strategies based on the 
state of both the system and the human as derived from the 
real-time process logs, which includes the data of current 
process variables, alarm information, and human-system 
interactions. The HMM predicts if the human state will be 
able to handle the situation given the time and circumstan-
ces. Based on this, it suggests the operator either adjust the 
control manually or allow the system to automate certain 
processes. The HMM can also be used to validate the 
actions of the operator according to the expert standards 
and prompt to avoid human errors. Moreover, the proposed 
framework is versatile enough to be used in real situations 
as well as during the training of the operator to enhance the 
guidance.

3.2.1. Algorithm
The algorithm is defined in Algorithm 1 and is available in 
the project repository1 (Abbas (2024)).

Algorithm 1. Human-Centered Specialized Reinforcement 
Learning Agent (HC-SRLA).

Step I: Dynamic influence diagram monitoring
Input:    

y: process variables
DID: trained model

Output:

s�: specific event of interest (such as abnormality)  
recommendation: pruned procedure

STEP II: Deep Reinforcement Learning Inference.
Input:

s�: specific event of interest (such as abnormality)    
y: process variables
phðsÞ : trained specialized actor

Safety control confidence interval check
Output:

lðsÞ: recommended control value (Equation (8)) or 
interval

STEP III: Hidden Markov Model Monitoring
Input:    

logs: process, alarms, and HMI-logs
HMM: trained model parameters

Output:
qt: hidden state predition from Equation (13)

STEP IV: Decision Support and Human Intervention
Input:

qt: hidden state interpretation (such as human 
failure)

Output:
intervention: intervention strategy suggestion
control: human intervention

4. Case study and design of experiments

The case study, conducted in collaboration with Politecnico 
Di Torino and Technological University Dublin, involves a 
simulated chemical plant dedicated to formaldehyde produc-
tion. The plant, which produces a 30% formaldehyde solu-
tion at a rate of 10,000 kg/h through partial oxidation of 
methanol with air, consists of three main sections: the feed 
section (comprising various systems such as nitrogen flow, 
methanol tank, pumps, boiler, compressors, heaters, piping, 
controllers, safety valves, and indicators), the heat and 
recovery section (housing three heat exchangers), and the 
reaction and separation section (featuring a reactor, control-
lers, alarms, sensors, rupture disk, absorber, and piping).

The study focuses on hazardous events or process safety 
occurrences, including depressurization of the methanol 
tank, air ingress into the methanol tank leading to the for-
mation of a flammable atmosphere, and reactor overheating. 
These scenarios are categorized based on complexities (nor-
mal and abnormal situations) within different plant sections. 
The goal is to vary the task load as a variable and observe 
its impact on performance, analyzing it alongside other vari-
ables to enhance the understanding of the system’s behavior.

The experiment aims to investigate the impact of various 
interactions between variables in human-machine and 
automation interactions on operator performance and its 
implications for process safety. The goal is to facilitate com-
prehensive risk-based decision-making for real-time support 
adaptation, process control optimization, and management 
of change. The key objectives include developing a real-time 
model to assess human performance in human-machine 
interaction environments, modeling safety data for Human- 
in loop configurations in process control, exploring optimal 
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decision-making processes in safety-critical systems using 
Reinforcement Learning with human-in-the-loop, and creat-
ing Bayesian networks to assist human operators in recom-
mending adaptive automation strategies.

4.1. Process control room simulation environment

Our experiment is based on a simulator created for formalde-
hyde production (Demichela et al. (2017)), which simulates a 
control room environment. A significant enhancement to this 
simulator is the “support panel” converting it into a compre-
hensive control room simulation with features like graphical 
production monitoring, an alarm list, a procedure list, and a 
suggestion box as shown in Figure 4.

4.2. Groups

For the comparative evaluation, the participants were div-
ided into two groups, the one with the AI support system 
and the one without it.

4.2.1. GroupN (without AI system)
The group without the AI system has a screen-based proced-
ure panel to manually go through the intervention proced-
ure and had the difference in the last section of the support 
panel that does not include any suggestion box as shown in 
Figure 5.

� Screen-Based Procedure Panel. The screen-based proce-
dures provided the participants with the intervention 
procedures for all the alarms per every sub-section of the 
plant. The participant has to click on the specific alarm 
which has to be recovered and follow the procedure 
accordingly.

4.2.2. GroupAI (with AI system)
The only difference between GroupAI from GroupN is an 
additional panel of suggestion boxes as shown in Figure 6.

� AI-Enhanced Decision Support Panel The AI-enhanced 
decision support panel introduces a concise representation 

Figure 4. Simulator screens, (left) mimic subprocess, (middle) overview of the plant, and (right) support panel.

Figure 5. GroupN support panel including screen-based procedures (Amazu, Mietkiewicz, Briwa, et al. 2024).
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of the intervention procedure to be followed and gives the 
root cause of the predicted failure even before the alarm. 
The probabilistic model predicts the failure and DRL pro-
vides the exact analog value for the controller to be manu-
ally configured. If the participant agrees to follow the 
suggestions by the AI system they have to acknowledge 
and then follow the guidelines. Furthermore, to gain the 
attention of the participant the acknowledge box starts 
blinking if there is any change in the suggestion so that the 
operator (participant) can monitor that change and per-
form the suggested action.

4.3. Scenarios

To evaluate the effectiveness of our decision support, we 
devised three scenarios, and further analysis of the scenarios 
was divided according to the Time of Interest (TOI):

4.3.1. Baseline overview (scenario 1)
This TOI refers to the condition where the operator just 
observes the overall process up to the time before the occur-
rence of the first critical alarm. This created a baseline per-
formance analysis of the participant in terms of 
physiological measures such as an eye tracker.

4.3.2. Critical alarm (scenario 2)
This TOI refers to the start of the first critical alarm to the 
time when it is either fully recovered or the end of the 

experiment. The three scenarios included within this TOI 
are as follows:

� Pressure indicator control failure. The automatic pressure 
management system in the tank malfunctions, requiring 
the operator to manually adjust nitrogen inflow to main-
tain pressure. The interruption of nitrogen flow leads to 
a pressure drop as the pump continues channeling nitro-
gen into the plant.

� Nitrogen valve primary source failure Similar to the first 
scenario, the primary nitrogen source fails, prompting 
the operator to switch to a backup system. While the 
backup system starts slowly, the operator regulates pump 
power to slow down the pressure drop in the tank.

� Temperature indicator control failure in the Heat 
Recovery section. The operator attempts to resolve the 
issue by adjusting the cooling water flow in the absorber 
manually.

4.3.3. Alarm overflow (scenario 3)
This TOI refers to the start of the alarm overflow (second 
critical alarm) to the end of the experiment. Scenario 3 
included within this TOI is as follows:

� Temperature indicator control failure in the Heat 
Recovery section The operator attempts to resolve the 
issue by adjusting the cooling water flow in the absorber 
manually. However, this proves ineffective, and the oper-
ator contacts the supervisor. The supervisor advises that 

Figure 6. GroupAI With support panel including screen-based procedures and AI-based suggestion box (Amazu, Mietkiewicz, Briwa, et al. 2024).
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the problem exceeds control room resolution and 
requires a field operator’s intervention. While the field 
operator addresses the issue on-site, the control room 
operator manages the reactor’s temperature, with a focus 
on preventing potential reactor issues.

For certain aspects of the comparative analysis, the pri-
mary focus wasn’t on comparing different scenarios. Thus, 
the results were normalized across scenarios and aggregated 
as an average for each participant. This process created a 
single data point for each participant within their respective 
group, reducing the comparison parameters and dimension-
ality. Furthermore, to normalize metrics within their corre-
sponding baseline TOI (where applicable) (Mathôt et al. 
(2018)), the following Equation (14) was applied:

Metric ¼
Metric in TOI

Metric in Baseline TOI
(14) 

4.4. Specialized RL agent control suggestion

For the scenarios designed in this controlled experiment, 
Figure 7 shows the inference of trained DRL agents special-
ized for the scenarios it is activated on. The inference 

validates that opting for precise adherence to DRL sugges-
tions by the participant or allowing the system to operate 
autonomously to address abnormalities leads to the optimal 
path in restoring the system to its normal operating status.

In 7a the nitrogen valve opening is controlled to maintain 
the tank pressure and in 7b the cooling system temperature 
is controlled to maintain the maximum reactor temperature. 
As can be seen in both figures, the DRL optimizes the pro-
cess disturbances (visualized by the ramp in the graphs) and 
tries to restore the process as promptly as possible. 
Moreover, 7b highlights a sinusoidal control pattern, indicat-
ing a need for constant and abrupt input changes to nor-
malize conditions. This design aligns with the requirements 
of the alarm overflow scenario, demanding precise control 
adjustments alongside effective alarm handling.

5. Data collection

The dataset and our evaluation strategy integrate subjective 
and objective measurements, including questionnaires, 
response times, heart rate, temperature, electrodermal activity 
(EDA), and eye-tracking metrics. These metrics are com-
monly employed in assessing cognitive states related to 

Figure 7. Specialized reinforcement learning agent training and inference for process abnormality related to (a) tank pressure and (b) reactor temperature.
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workload, situational awareness, stress, and fatigue. Workload 
is measured using the NASA Task Load Index (NASA-TLX) 
and physiological data to assess mental, physical, and tem-
poral demands. Situational awareness is evaluated with the 
Situation Awareness Rating Technique (SART) and a think- 
aloud Situation Presence Assessment Method (SPAM), which 
gauges the operator’s understanding and projection of future 
states. Performance metrics, such as response time and accur-
acy, assess the decision support system’s (DSS) effectiveness in 
aiding decision-making and task execution. Additionally, trust 
in the DSS is measured through questionnaires to evaluate 
operators’ confidence in the AI system, essential for its accept-
ance and operational success. A detailed explanation of the 
dataset is provided in this data article Amazu, Mietkiewicz, 
et al. (2024) and the dataset is available in this repository2

(Abbas & Winniewelsh, 2024).
Furthermore, the datasets encompass information derived 

from a simulated formaldehyde production plant, involving 
participant interaction within a controlled experimental set-
ting resembling a control room. The human-in-the-loop 
scenario included tasks like Monitoring, Alarm Handling, 
Recovery planning, and intervention (Troubleshooting, 
Control, and Evaluation). Data collection involved 47 partic-
ipants divided into two groups, each undergoing the speci-
fied task flow. Participants were graduate chemical 
engineering students with intermediate knowledge of process 
control and control rooms. Participants tested three scen-
arios lasting 15–18 minutes, with breaks and survey comple-
tion periods in between, utilizing different combinations of 
decision support tools. The decision support tools varied 
across groups, encompassing factors of digitized screen- 
based procedures and the inclusion of an AI recommenda-
tion system.

The significance of this research lies in its relevance in com-
paring current industry practices and their impact on operators’ 
performance and safety. It is also applicable for validating pro-
posed solutions within the industry. The dataset is utilized for 
statistical analysis to compare outcomes among different 
groups. These datasets have potential applications for decision- 
makers involved in control room design and optimization, pro-
cess safety engineers, system engineers, human factors engineers 
in process industries, and researchers in related domains. The 
hierarchy of the dataset is shown in Figure 8 and the processed 
dataset can be found in this repository3 (Abbas (2024)).

The collected raw data was processed particularly for the 
analyses in this paper. The data from individual participants 
was concatenated and merged in a single Excel file for fur-
ther evaluation. The data used for comparison between the 
GroupN and GroupAI is presented in the merged normal-
ized data folder. The Excel file contains the data points for 
each participant per row and each column represents the 
data and sub-data collected from various sources.

In the folder of “hmm modeling” (Figure 8) the con-
catenated data represent the time-series data of the process, 
alarms, and HMI logs for every participant into a single file 
as is required by the HMM python library (Lee (2023)). 
Furthermore, a separate file is included that provides the 
labels for participants who failed during the task based on 
various factors such as the consequence of plant shutdown 
or reactor overheating and overall performance.

5.1. Ethics statement

This research study was conducted following the ethical 
guidelines set forth by the Technological University Dublin 
Ethical Review Committee. Ethical approval for this study 

Figure 8. Dataset file hierarchy.
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was obtained from the Technological University Dublin 
Ethical Review Committee (REC Approval Number: REC- 
20-52A). All participants provided informed consent before 
participating in the study, and their confidentiality and priv-
acy were strictly maintained throughout the research pro-
cess. Any potential risks to participants were minimized, 
and steps were taken to ensure the well-being of all individ-
uals involved in the study.

5.2. Value of the data

5.2.1. Optimizing human-AI interaction
The dataset provides an opportunity to study the integration 
of human-in-the-loop configurations with AI systems in 
safety-critical industries. By examining the data, researchers 
can identify the factors necessary for successful collaboration 
between humans and AI. This knowledge can lead to the 
development of optimized interaction mechanisms, ensuring 
that the strengths of both humans and AI are leveraged 
effectively to enhance decision-making in critical scenarios.

5.2.2. Evaluation of AI-enhanced decision support system
The dataset allows for qualifying and quantifying the per-
formance and effectiveness of the AI-enhanced decision sup-
port system incorporating DRL. By analyzing the data, 
researchers can assess how well the system performs in 
safety-critical process industries with human-in-the-loop 
configurations, which is rarely observed. This evaluation can 
provide insights into the potential benefits, scope, and limi-
tations of utilizing DRL in such contexts.

5.3. Data explanation

In this section, a brief description of each variable in the 
dataset is provided.

5.3.1. Biometric measures
The biometric data for this study is described in Amazu, 
Mietkiewicz, Abbas, et al. (2024). This includes data on the 
pulse rate, electrodermal activity, and temperature of partici-
pants during the test. A brief description of each measure is 
also given below.

� Electrodermal Activity (EDA) or Galvanic Skin Response 
(GSR). It measures the skin’s electrical conductance of 
the skin. It is influenced by sweat gland activity, for 
example, the skin’s moisture level.

� Pulse Rate or Heart Rate It defines the number of heart-
beats per unit time (bpm).

� Temperature The body temperature here refers to the 
degree of coldness or hotness of the body.

5.3.2. Eye tracker
Tobii Pro Glasses 3 (Tobii Technology, 2024a) and Tobii 
Pro Lab (Tobii Technology, 2024b) analysis software were 
used in this experiment for eye tracking and extracting 

useful metrics within the defined Time of Interest (TOI), 
allowing for better evaluation of visual attention dynamics:

� Baseline Overview (pre-alarm occurrence): From the start 
of the experiment to the start of the first critical alarm 
(scenario 1).

� Critical Alarm: From the start of the first critical alarm 
to the end of it (scenario 2).

� Alarm Overflow: From the start of the second critical 
alarm to the end of the experiment (scenario 3).

All the eye tracker metrics were categorized based on 
these TOIs for evaluating visual attention across distinct 
phases of the experiment. To normalize each eye tracker 
metric within its corresponding TOI, Equation (14) was 
applied. This normalization process ensured that the metrics 
were evaluated relative to the baseline, facilitating meaning-
ful comparisons and insights.

5.3.2.1. Fixation. Fixation is the stable gaze or sustained 
focus on a specific point in the visual field. During fixation, 
the eyes remain relatively stationary, allowing detailed proc-
essing of visual information at that location.

� Fixation Duration: Fixation duration is the amount of 
time individuals concentrate on a particular point of 
interest. This measurement helps identify elements that 
capture extended attention, enhancing our understanding 
of information processing and cognitive involvement.

� Pupil Diameter: Pupil diameter during fixation serves as 
a vital metric indicating shifts in cognitive load and emo-
tional arousal. Analyzing changes in pupil size allows us 
to comprehend the cognitive effort and emotional reac-
tions linked to particular visual stimuli.

5.3.2.2. Saccade. It refers to rapid eye movements that occur 
between periods of fixation. It allows us to evaluate visual per-
ception, information processing, and the dynamics of decision- 
making. Furthermore, characteristics during saccades include:

� Amplitude: The distance covered during a saccade.
� Velocity: The speed of the eye movement.
� Peak Velocity: The maximum speed reached during a 

saccade.
� Duration: The time taken for the completion of a 

saccade.

5.3.2.3. Heat map. The heat map visually displays regions 
that attracted participants’ visual attention. Brighter areas on 
the heat map signal a higher concentration of fixations, pro-
viding information about key focal points within the visual 
stimuli. This understanding is especially valuable when com-
paring the heat map with TOIs, revealing how visual atten-
tion changes during different phases of the experiment.

5.3.3. Process, alarms, and HMI logs (online)
The performance and behavioral measures derived from the 
online logs and how they were derived are detailed in 

12 A. N. ABBAS ET AL.



Amazu, Abbas, et al. (2024). A brief description of what 
they mean is shown below.

5.3.3.1. Alarms. 
� Number of alarms annunciated.
� Number of alarms silenced.
� Number of alarms acknowledged.

5.3.3.2. No. of procedures. The number of procedures 
opened during the duration of each scenario.

5.3.3.3. No. of mimics opened. The number of mimics4

opened during the duration of each scenario.

5.3.3.4. AI acknowledgement. The number of times the AI 
acknowledgment button was pressed during the duration of 
each scenario.

5.3.3.5. AI vs. human response. Deviations and preliminary 
analysis of decisions taken by the human participant and 
suggestions by AI/DRL agent were analyzed and the mean 
error was calculated. Figure 9 illustrates the aggregated 
mean and standard deviation of the human vs AI 
(DIDþ SRLA) control for all the participants in GroupAI. It 
includes the scenarios of (a) critical alarm and (b) alarm 
overflow. The DRL control suggestion is based on the 

Figure 9. Average DRL vs. human response for 23 participants during (a) critical scenario: tank flow error and (b) overflow scenario: reactor temperature error.
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current state of the process and is considered to be ideally 
optimal in the case of this experiment. The optimality of the 
DRL suggestions is verified through a carefully controlled 
experimental design, barring any unforeseen deviations by 
the human participant. This can be further validated in the 
correlation analysis conducted later in Section 3, revealing a 
positive correlation between higher errors and more adverse 
consequences. Therefore, the AI_vs_human measure was 
used to evaluate the performance of participants in terms of 
optimally following the suggestions.

5.3.4. Operational measures (offline)
These metrics are derived from the online process logs and 
can only be measured once the experiment has been com-
pleted, hence these are computed offline. It gives the overall 
indication of the performance of the participant.

5.3.4.1. Behavioral measures. These metrics pertain to the 
human participant’s behavior relating to the intervention 
strategy based on time.

� Recovery Time: The time to recover the critical alarm.
� Reaction Time: The time of the first control action.
� Response Time: The time it takes to Perform the last 

control action on the expected area of interest.

5.3.4.2. Performance measures. 
� Recovery Status: Classified into optimal, good, and poor 

based on the participant’s ability to manage the situation 
without an alarm annunciation (optimal, ability to 
recover the alarm even if annunciated (good), and failure 
to recover the alarm (poor).

� Accuracy: This metric quantifies the mean square error 
between the executed action and the prescribed control 
action (expert response, as specified in the operating pro-
cedure manual). Notably, the expert response over which 
the “Accuracy” is measured is a constant average baseline 
and is not adapted to the current state of the system, unlike 
the AI_vs_Human response. Furthermore, accuracy is a 
common factor between both groups for easy comparison, 
however, the AI_vs_Human response is just for GroupAI.

� Consequence: Broken down into different levels depend-
ing on the event. The possible consequences are impurity 
of air in the tank atmosphere, plant shutdown, reactor 
overheating, and safe state.

� Overall Performance: Classified into optimal, good, and 
poor performance based on percentiles of the recovery 
time.

5.3.5. Questionnaires
Some questionnaire-based measures below have been 
detailed in a previous study by Amazu, Mietkiewicz, Briwa, 
et al. (2024). A brief description is provided for each.

5.3.5.1. Task load. Questions on how the participants per-
ceived the complexity of the task were asked at the end of 
each scenario.

5.3.5.2. NASA-TLX, SART, and SPAM indexes. The Task 
Load Index (TLX) and Situation Presence Assessment 
Method (SPAM) indexes are calculated as the average of 
their six and three dimensions, respectively. Situation 
Awareness Rating Technique (SART) is based on Equation 
(15), as previously detailed in Amazu, Mietkiewicz, Briwa, 
et al. (2024)5. The thematic breakdown of the questions 
asked is shown in Table 1.

SART Understanding ¼ SART Demand − SART Supply
(15) 

5.3.5.3. Alarm prioritization support. This entails the per-
ceived support of the participants on how well the alarm 
prioritization supported them during the scenario.

5.3.5.4. Procedures support. This refers to the perception of 
the participants on how well the procedures supported them 
during the task.

5.3.5.5. AI support questions. These questions were asked 
after the end of the entire experiment (all 3 scenarios).

� Level of explainability of the AI suggestion.
� Level of trust for the AI suggestion.
� Helpfulness of the AI suggestion.
� Additional workload imposed by the AI suggestion.
� The tradeoff between the benefits of the AI system vs the 

additional workload.
� Importance of validating the AI suggestion by manually 

going through the screen-based procedures.

5.3.5.6. Questions related to DRL. Some specific question-
naires were asked for the DRL analog value suggestions pro-
vided to the human participant as shown in Figure 10

� Importance of the DRL (analog) value in the AI 
suggestion.

� Increase in trust due to the DRL (analog) value (if any).

The data analysis is divided into two main sections. In 
Section 6, we compare GroupN and GroupAI, and within 
GroupAI, we focus on participants. The objective is to assess 
the impact of the AI-enhanced decision support framework, 
specifically, the dynamic influence diagram-based DRL out-
lined in Mietkiewicz et al. (2023, 2024). This analysis lays 
the groundwork for understanding the dataset, recognizing 

Table 1. Questions that were asked to evaluate each of these themes.

NASA-TLX index SART index SPAM index

Mental demand Instability Monitoring
Physical demand Variability Planning
Temporal demand Complexity Intervention
Performance Arousal
Effort Spare capacity
Frustration Concentration

Attention Division
Quantity
Quality
Familiarity
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patterns, and informing the development of an extended 
framework for real-world implementation. Moving on to 
Section 7, this section validates the extended framework. It 
offers a detailed analysis of observations and explores poten-
tial future applications in industries. Specifically, it delves 
into the human-in-the-loop specialized DRL framework that 
utilizes a hidden Markov model for real-time system failure 
prediction based on human and process states.

6. Analysis I: exploratory data analysis

An experimental study was conducted to evaluate the per-
formance of the recommendation system and the impor-
tance of the DRL agent. GroupN is the group without the 
AI system and GroupAI refers to the group with the aid of 
the AI recommendation system. There are a total of 47 par-
ticipants with 23 participants in GroupN and 25 participants 
in GroupAI. The participants’ perceived familiarity with the 
process industry and control room was recorded on a scale 
of 1–5 to ensure a balanced experience across each group. 
Both groups of participants had an average industry famil-
iarity score of 3 and a control room familiarity score of 2. 
The data was normalized using a MinMax scalar with values 
ranging from 0.0 to 1.0. The normalization was applied 
across grouping by scenario to minimize the effect of the 
scenarios on all the participants from both groups.

In this section, we cross-correlate different performance 
measures to evaluate the overall performance between groups 
as well as within participants in GroupAI for their different 
choices of preferences. Furthermore, this cross-analysis will 
help in identifying the relationship of the process, alarm, and 
HMI logs as well as the DRL vs AI response with other 
important factors such as situational awareness, task load, trust 
in the system, and overall performance, etc. to be able to valid-
ate the real-time prediction of operator state.

6.1. Between participants (GroupN and GroupAI)

The analysis here primarily focused on group comparison 
rather than comparing scenarios. Thus, results were normal-
ized across scenarios and averaged for each participant, sim-
plifying the data by condensing it into single data points per 
participant and reducing comparison dimensionality.

6.1.1. Heat map
Figure 11 shows the heat map of the participants’ data (17 
participants) within the groups with and without AI support 
for the entire recording for scenarios 1 and 2 combined.

� Time of Interest – Critical Alarm: Figure 12 shows the 
heat map for the specific Time of Interest (TOI) of criti-
cal alarm (scenario 2). As can be seen for GroupAI (with 
AI support), people focus more on the AI suggestion 
rather than the procedure, and the DRL analog sugges-
tion value and the control task to return the plant to 
normal condition as soon as possible as compared to 
GroupN (without AI support).

6.1.2. Radar plot
Figure 13 presents a radar plot of the results used to enable 
cross-evaluation of several different factors to be conducted.

� Consequence: This factor is nearly the same for both 
groups, indicating the performance based on the overall 
recovery of the plant does not vary.

� Recovery, Reaction, and Response Time: All of these fac-
tors are lower in GroupAI as compared to GroupN indi-
cating the performance in terms of reduced information 
processing time.

� Accuracy: It is higher for GroupAI which shows the abil-
ity to follow the operational guidelines accurately.

� Mimics Opened and Number of Alarms: Both of these 
factors were observed to be lower in the case of 
GroupAI, indicating the preventive and proactive ability 
provided by the AI system to the participants and mini-
mizing the task-solving complexities.

� Overall Performance: It was measured greater for 
GroupAI as compared to GroupN which was evaluated 
based on how correctly the overall system was stabilized.

� Task Load, SART, TLX, and SPAM Index: All the ques-
tionnaires indicated lower values for GroupAI compared 
to GroupN. Despite GroupAI having a reduced task load, 
their situational awareness is effectively lower.

� EDA, Temperature, and Pulse Rate: In examining these 
measures, it was observed that GroupAI exhibited higher 
levels of EDA and temperature, while their pulse rate 
was lower. The autonomic nervous system (ANS) is 
responsible for regulating various physiological responses 
(Ghiasi et al. (2020)), including heart rate and electroder-
mal activity. While EDA and temperature may indicate 
increased sympathetic nervous system activity, heart rate 
is also influenced by both sympathetic and parasympa-
thetic branches. The group with higher EDA and 

Figure 10. Questions related to deep reinforcement learning suggestions.
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temperature may be experiencing a specific pattern of 
autonomic response that involves decreased parasympa-
thetic activity, leading to lower heart rates.

� Eye Tracking Metrics: GroupAI exhibited longer fixation 
and saccade durations, smaller and slower eye movements 
(lower saccade amplitude and velocity), and reduced pupil 
diameter compared to GroupN. These findings suggest 
that GroupAI employs a more focused and deliberate cog-
nitive processing strategy, potentially perceiving the task 
as less demanding or engaging than GroupN.

6.1.3. Correlation matrix
A Pearson correlation analysis (Sedgwick (2012)) was con-
ducted on participant data from both groups combined. The 

results were then filtered to visualize only those correlations 
exceeding a specified threshold of 0.4, as shown in Figure 14.

� Control Room Familiarity: It is directly correlated with 
the higher scores for AI benefits and help, as well as the 
utilization of AI suggestions.

� Recovery Time: Reaction time, response time, and num-
ber of alarms are directly correlated with the recovery 
time and inversely correlated with the accuracy.

� Number of Alarms: It correlates directly with the TLX 
index, task load, SPAM index, average pupil diameter, 
and consequence.

� Procedures Support: It is directly correlated with the SART 
index and inversely correlated with the consequence.

Figure 12. Heat maps for participants in (a) GroupN (without AI support) and (b) GroupAI (with AI support) within the time of Interest (TOI) of critical alarms.

Figure 11. Heat maps for participants in (a) GroupN (without AI support) and (b) GroupAI (with AI support).
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� Velocity: Velocity is directly correlated with recovery 
time, mimics opened, overall performance, SART, and 
SPAM index.

� Fixation Duration: It shows an inverse correlation 
between recovery time and the number of alarms. It is 
directly correlated with the number of procedures 
opened.

� AI (DRL) vs Human Response: This metric shows a dir-
ect correlation with recovery and reaction time. On the 
other hand, it is inversely correlated with recovery status, 
accuracy, SPAM index, pupil diameter, velocity, saccade 
amplitude, AI acknowledgment, AI support, and AI help. 
As the deviation from the suggested value increases, 
there is a corresponding rise in the time needed to attain 
process stabilization, leading to a decline in recovery per-
formance. The escalation of errors also signifies a reduc-
tion in situational awareness (SPAM). Additionally, it is 
noteworthy that a lower error in adhering to the DRL 
recommendations correlates with higher participant rat-
ings for the help and support offered by the overall AI 

system, along with an increased frequency of acknowl-
edging and accepting the AI suggestions. Furthermore, 
higher error also results in lower pupil diameter, saccade 
velocity, and amplitude which may suggest reduced 
arousal, slower eye movements, and more restricted vis-
ual processing.

� AI Acknowledgement: The degree to which a participant 
concentrates on adhering to the AI’s recommendation 
directly correlates with heightened situational awareness 
(SPAM), enhanced perception of AI assistance, and 
support.

� AI Explainability: A heightened understanding of the AI 
system, particularly in terms of explainability for the par-
ticipant, yields increased situational awareness (SPAM).

� AI Trust: The participant’s response to the trust in the 
AI system is inversely proportional to the reaction time, 
saccade amplitude, EDA, and pulse rate. It suggests that 
as individuals develop a higher level of trust in the AI 
system, they exhibit faster reaction times, reduced eye 
movements, decreased electrodermal activity, and a lower 

Figure 13. Radar plot between GroupN (blue) and GroupAI (red).
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pulse rate. These observed physiological and behavioral 
changes likely signify a more relaxed and less stressed 
response in participants who trust the AI system.

� AI as Additional Work Load: Participants tend to rate 
higher scores for perceiving the AI system as an add-
itional workload. Surprisingly, this perception is associ-
ated with a decrease in reaction time, number of alarms, 
velocity, and electrodermal activity (EDA), which are 
typically indicative of lower workload. However, there is 
a positive correlation with saccade duration, suggesting 
that participants may spend more time making eye 
movements when perceiving the AI system as a higher 
workload. The contradictory nature of these findings sug-
gests a need for further investigation to understand if 
there are any unexpected factors influencing these out-
comes or if there might be nuances in how participants 
perceive and respond to the AI system’s workload.

� AI Benefits vs Additional Workload: It shows a positive 
correlation with alarms silenced, alarms acknowledg-
ments, number of alarms, TLX index, procedures sup-
port, AI acknowledgment, and AI trust. With AI vs 
human error, a negative correlation can be observed. The 
favorable view that participants hold toward the benefits 
of AI vs the additional workload is linked to heightened 
trust, following AI suggestions by acknowledging it. The 

inverse relationship with human error implies pervasive 
confidence in AI as a dependable and error-reducing 
solution.

� AI Validity: The participants who were more likely to 
consider the importance of validating the AI system 
opened more mimics and had a higher fixation and sac-
cade duration. Longer saccades may indicate increased 
cognitive load or visual search difficulty, while prolonged 
fixations suggest in-depth processing, interest, or confu-
sion (Unema et al. (2005); Fadardi et al. (2022); 
Mahanama et al. (2022); Stuyven et al. (2000)).

� DRL Importance: We observed a positive correlation 
between the importance of DRL as a response by partici-
pants to SART, AI trust, and AI as an additional work-
load. Furthermore, it was negatively correlated with 
reaction time, EDA, and pulse rate. This implies that as 
the perceived importance of DRL increases, participants 
tend to respond more to the task, trust AI more, and 
perceive AI as a greater workload, but also exhibit faster 
reaction times and reduced physiological responses.

� Trust Increase due to DRL: It is directly correlated with 
SART, AI support, AI trust, and DRL importance, and 
inversely correlated with the reaction time. It indicates 
the increase in overall AI support and trust with the 
DRL’s analog value and faster reaction responses.

Figure 14. Correlation matrix for participants in both groups.

18 A. N. ABBAS ET AL.



6.1.3.1. Significantly correlated matrix. Probability values 
(p-values) using a two-sample independent t-test were 
derived to confirm that the differences in results between 
the groups are not merely due to random group assignments 
or individual variations (Sedgwick (2014); Kim (2015); 
Manfei et al. (2017)). Given that multiple comparisons/ 
hypotheses are made in this study, a Bonferroni correction 
was applied to the threshold to avoid false positives 
(Weisstein (2004)). The correction is calculated by dividing 
the significance level (a) by the number of tests (m) 
(Equation (16)). This results in a more stringent threshold 
for determining statistical significance.

aadjusted ¼
a

m
(16) 

where a is the initial significance level (e.g., 0.05) and m is 
the number of hypotheses tested. Following the Bonferroni 
correction, a low p-value or probability value, typically 
below aadjusted (here 0.0019), signals whether our findings 
are statistically significant or if they could be due to ran-
dom chance. This adjustment minimizes the risk of false 
positives and strengthens the validity of our findings. The 
correlation matrix for variables that demonstrated statistical 
significance with a correlation value greater than 0.4 is pre-
sented in Figure 15. Higher overall performance is signifi-
cantly associated with faster recovery times, fewer alarms, 

and lower consequences. A higher task load links signifi-
cantly with longer recovery times, while AI-related errors 
are connected to longer recovery and reaction times. 
Additionally, longer reaction times are related to lower 
trust in AI, less perceived helpfulness from AI, and 
decreased importance and trust due to DRL. From these 
results, it can be interpreted that performance and user 
trust in AI are enhanced by faster recovery and fewer 
alarms, while increased task load and AI vs human errors 
reduce recovery speed and trust in AI.

6.1.4. Factor analysis
Factor analysis is a statistical method used to explore rela-
tionships among observed variables by postulating underly-
ing latent factors. In the factor model equation, observed 
variables (X) are expressed as linear combinations of latent 
factors (F) and unique factors (U), represented by the factor 
loading matrix (K). The covariance matrix (R) can be 
decomposed into the product of K and its transpose, plus a 
diagonal matrix (W) of unique variances. To determine the 
optimal number of factors, a scree plot is generated by plot-
ting the eigenvalues of the covariance matrix, and the elbow 
joint, indicative of the optimal number of factors, is identi-
fied by analyzing the second difference in the cumulative 
variance explained with a threshold of 0.05 as shown in 

Figure 15. Significant correlation matrix with values greater than 0.4 and based on two-sample independent t-test and Bonferroni correction.
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Figures 16 and 17. The following statistical modeling can be 
decomposed as follows:

X ¼ KF þ U
R ¼ KKT þW

Cumulative Variance ¼
Pn

i¼1EigenvalueiPn
i¼1Eigenvalues

Second Differences ¼ diffðdiffðCumulative VarianceÞÞ
Elbow Point ¼ argmaxðSecond DifferencesÞ

(17) 

� Interpretation of the Factors: The factor analysis con-
ducted on the dataset identified a crucial factor, chosen 
at the point where the cumulative variance explained 

reached 50% (benchmark). This factor, along with the 
preceding factors, collectively explains approximately half 
of the total variance in the data. The analysis successfully 
achieved dimensionality reduction, simplifying the inter-
pretation of the complex dataset. While the 50% cumula-
tive variance is a meaningful balance between model 
simplicity and explanatory power, further exploration of 
additional factors or alternative models is advisable for a 
more detailed understanding of the underlying structure. 
The interpretation of factors is context-dependent, 
emphasizing the significance of findings concerning the 
specific goals and nature of the variables in the analysis. 
The factor analysis performed here was the combination 
of all the variables and the data points of all the partici-
pants involved in both groups and also included some 

Figure 16. Scree plot and the best possible value of the factors.

Figure 17. Cumulative explained variance per each factor.
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missing variables. Therefore, further analysis is required 
to break down the data points in terms of specific con-
text as well as scenario-wise for detailed exploration. 
Overall, the factor analysis provided insights into the 
relationships among observed variables, facilitating a con-
cise and interpretable representation of the dataset as 
shown in Table 2. A factor loading importance threshold 
of 0.4 was chosen which was identified iteratively to cap-
sulate the valuable factors involved in the experiment.

Table 2 represents a factor analysis on five key factors for 
which these titles were interpreted: Situational Awareness & 
Performance, System Status & Task Impact, Human-AI 
Interaction & Trust, Oculomotor Behavior: Cognitive Load 
& Attention, and AI and DRL Perception. Each factor is 
associated with a set of variables that give a general overview 
of the group it belongs to. For instance, the first factor 
includes variables like recovery time, reaction time, response 
time, accuracy, SPAM index, etc., which relates to the sys-
tem’s performance and the user’s awareness of the situation. 
This helps in understanding the correlation and variability 
among these observed variables.

6.1.5. Discussion on analysis between GroupN and 
GroupAI
GroupAI, demonstrated faster decision-making and task exe-
cution with higher accuracy and overall performance, sug-
gesting the effectiveness of AIþDRL assistance in 
operational contexts. However, despite reporting a lower 
perceived task load, participants in GroupAI showed signs 
of potentially reduced situational awareness, as evidenced by 
physiological indicators and eye-tracking metrics. 
Correlation and factor analyses further explained the rela-
tionships between various performance metrics, user percep-
tions, and AI system characteristics. These findings highlight 
the importance of balancing task efficiency with maintaining 
situational awareness and user trust in AI systems for opti-
mal performance in complex environments.

6.2. Within participants (GroupAI)

This section presents the analysis of the aggregate GroupAI 
results and provides a comparison of the participants 
involved within GroupAI.

As depicted in the diverse heatmaps representing differ-
ent participants from GroupAI in Figure 18, distinct 

patterns emerge. Certain participants (a) exclusively adhere 
to the AI procedure, others (b) concurrently emphasize both 
AI and DRL, (c) a subset concentrates solely on screen pro-
cedures, meanwhile, (d) some validate their approaches 
through a combination of AI and screen procedures.

A subset of participants from GroupAI was chosen based 
on how they preferred to understand and adhere to the 
intervention strategy as shown in Table 3. This interpret-
ation of the preference was extracted from the heatmap and 
other variables such as AI vs human response. One observa-
tion regarding participant preferences was that those with 
more familiarity with the industry tended to prefer screen 
procedures for intervention over AI suggestions. Conversely, 
participants with the least industry experience favored AI 
suggestions and did not focus on screen procedures or DRL 
control suggestions. Two participants were compared with 
each other on various factors to better understand the 
behavior patterns and performance. For each comparison, a 
participant was included who preferred to use both the 
AIþDRL support to be able to understand its characteris-
tics with the other participant’s behavioral pattern.

6.2.1. Analyzing participant preferences: AI vs. AIþDRL 
(P21 vs. P24)
This section compares P21 (preference: AI) and P24 (prefer-
ence: AI and SRLA).

� AI (SRLA) vs Human Response: The comparison 
between the Specialized Reinforcement Learning Agent 
(SRLA) suggestion and the human response can be seen 
in Figure 19, which shows P24 follows the SRLA sugges-
tions better than P21, however, for the scenario of alarm 
overflow both the participants have similar poor 
performance.

� Radar Plot: Participant P21 demonstrates superior 
physiological responses, better AI interaction, higher 
overall performance, quicker recovery from errors, and 
greater task accuracy compared to P24. P24, on the other 
hand, exhibits a higher cognitive workload, better situ-
ational awareness, and more significant consequences 
for actions. The comparison suggests that P21 excels in 
performance-related metrics, while P24 may have 
strengths in cognitive aspects and situational awareness 
(Figure 20).

Table 2. Factor analysis.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
(Situational awareness & 
performance) (System status & task impact) (Human-AI interaction & trust)

(Oculomotor behavior: 
cognitive load & attention (AI and DRL perception)

Recovery_time Recovery_status Accuracy Velocity_overflow EDA
Reaction_time No_of_alarms AI_vs_human_error Fixation_duration_overflow AI_trust
Response_time Consequence AI_ack Saccade_duration_overflow AI_additional_load
Accuracy Overall_performance AI_support Saccade_amplitude_overflow DRL_importance
No_of_alarms TLX_index Trust_increase_due_to_DRL Trust_increase_due_to_DRL
SPAM_index
Pupil_diameter_overflow
Velocity_critical
Pulse_rate
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6.2.2. Analyzing participant preferences: procedures vs. 
AIþDRL (P30 vs. P32)
This section compares P30 (preference: screen procedures) 
and P32 (preference: AI and SRLA).

� AI (SRLA) vs Human Response: The comparison 
between the SRLA suggestion and the human 
response can be seen in Figure 21, which shows that 
P32 follows the SRLA suggestions better than P30 for 

Figure 18. Heat maps for (a) P21, (b) P24, (c) P30, and (d) P37 within the time of interest (TOI) of critical alarms.

Table 3. Selection of participants based on their preference of suggestion tool used during the experiment.

Participants Preference Industry familiarity (1–5) Control room familiarity (1–5)

P21 AI 1 3
P24 AIþDRL 3 2
P30 Procedure 4 2
P32 AIþDRL 3 2
P37 AIþ Procedure 3 3
P96 AIþDRL 3 2
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both the scenario of critical alarm and alarm 
overflow.

� Radar Plot: Participant P30 generally experiences higher 
consequences, workload, and positive interaction with 
AI, however, has higher errors following the AI sugges-
tion. P30 also ranks procedures support and the need for 
AI validation higher as evidenced by the preferred choice 
of intervention support. P30 also encounters higher 
recovery, reaction, and response time leading to more 
alarms and the opening of more mimics, indicating 
higher evaluation time for following the screen proce-
dures support. In contrast, P32 excels in situational 
awareness, quicker transitions between points of interest 
sustained attention at specific locations, and more delib-
erate or careful exploration of the visual environment 
(based on eye movement dynamics). P32 relies more on 
AI support and rates highly its help demonstrating 
quicker recovery and higher importance of DRL, how-
ever, experiences a higher load in doing so as also evi-
dent from the rating of AI as an additional load (Figure 
22). Moreover, a noteworthy observation from this ana-
lysis was that the participant (P30) who opted not to fol-
low the AI and experienced failure assigned a higher 
trust score to the AI. This suggests that the participants 
perceived that had they followed the AI’s guidance, the 
outcome might have been more favorable.

6.2.3. Analyzing participant preferences: AIþ procedures 
vs. AIþDRL (P37 vs. P96)
This section compares P37 (preference: AI and Screen 
Procedures) and P96 (preference: AI and SRLA).

� SRLA vs Human Response: The comparison between the 
SRLA suggestion and the human response can be seen in 
Figure 23, which shows a comparable performance of both 
the participants, however, P96 tends to respond more accur-
ately to the dynamic changes of the SRLA suggestions.

� Radar Plot: Participant P37 encounters more challenges 
with higher AI vs human error, longer recovery time, 
increased alarms, opened procedures, severe consequen-
ces, higher task load, EDA, and temperature. In contrast, 
Participant P96 experiences a more positive interaction 
with AI, including higher AI acknowledgment, support, 
explainability, better recovery status, response time, 
accuracy, and overall performance, but also higher per-
ceptions of AI as an additional load. P96 also reports a 
balanced perceived task load and higher situational 
awareness (Figure 24).

6.2.4. Discussion on findings within GroupAI
The analysis compares the behavior and performance of par-
ticipants within GroupAI, focusing on their preferences for 

Figure 19. SRLA vs. human response of participant (a) P21 and (b) P24 within the time of interest (TOI) of critical alarms (scenario 2) and alarm overflow (scen-
ario 3).
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different intervention strategies, including DID, DRL, 
DIDþDRL, and screen procedures. Overall, distinct pat-
terns emerged among participants, with some adhering to 
DID procedures, others combining DID and DRL, and some 
relying solely on screen procedures.

When comparing participants who followed DID and 
DIDþDRL strategies, the latter demonstrated better adher-
ence to AI suggestions, while participants who followed the 
DID-only approach showcased superior performance met-
rics, suggesting strengths in DID interaction and task accur-
acy. Those who followed the AI strategy exhibited higher 
cognitive workload and situational awareness. Similarly, 
when comparing participants who followed screen proce-
dures-only and AI strategies, differences in response to AI 
suggestions were observed, with the participant choosing AI 
showing better accuracy, while participants who relied solely 
on screen procedures experienced higher consequences and 
workload but assigned a higher trust score to AI (interpreted 
as their perception on if they would have followed the AI 
suggestion, they would have performed better). Lastly, in the 

comparison of participants who followed DIDþ Screen 
Procedures and AI strategies, the latter displayed more posi-
tive interactions with AI suggestions, including better recov-
ery and overall performance, despite both groups facing 
challenges such as increased alarms and task load.

These findings highlight the relationship between individ-
ual preferences, task performance, and the effectiveness of 
different intervention strategies within the GroupAI.

6.3. Human performance vs, system performance

In this analysis, we aim to explore the research question sur-
rounding the limitations of automation and discern the 
point at which its efficiency diminishes.

The metrics for analysis were divided in such a way that 
it can capture the performance of the human as the operator 
and decision-making agent as well as the performance of 
the system that would be in the case of GroupAI the AI and 
DRL recommendation system. From the frequency plot 
of the overall consequences of participant’s actions 

Figure 20. Radar plot between participant 21 and 24..
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(air impurity, plant shutdown, reactor overheat, or safe) 
incurred during plant abnormality in the simulation as 
shown in Figure 25, it can be observed that with the AI sys-
tem in an alarm overflow scenario (a problem in the 
reactor), it becomes difficult to recover the plant and to 
focus on the recommendation of the DRL precisely.

6.3.1. Between participants (GroupN and GroupAI)
To delve deeper into our investigation, we divided the radar 
plot between scenarios 2 and 3 (Section C). A notable dis-
tinction emerges in Figures 26 and 27, particularly in overall 
performance and adverse consequences. The accuracy of 
GroupAI experiences a decline in the scenario of alarm 
overflow. Concurrently, there is an increase in the perceived 
task load (as indicated by the TLX index) for GroupAI in 
the same scenario. This suggests that when the operational 
situation becomes overly complex, making it challenging for 
the operator to adhere precisely to the system’s recommen-
dations, the likelihood of failure increases. In light of this, 
two potential approaches come to the forefront: first, the 
adoption of full autonomy to enhance response time and 
system dynamics management; alternatively, the manual 
handling of process abnormalities in scenarios where adher-
ing strictly to recommendations becomes impractical.

6.2.3. Within participants (GroupAI)
Further investigation was carried out to compare the partici-
pants belonging to the same group (GroupAI) for critical 
alarm and alarm overflow scenarios as shown in Figure 28. 
The common factors that were observed to increase in alarm 
overflow scenarios were AI vs human error, task load, num-
ber of screen procedures opened, and time to take the 
required action. This suggests that as the scenario complex-
ity and task load increases there is also an increase in the 
precision and time required to follow the AI suggestions as 
well as to verify those suggestions through other means 
(such as screen procedures).

7. Analysis II: human failure prediction in real-time 
using process variables and human-machine 
interaction

The data used to train the Hidden Markov Model (HMM) 
included the variables that can be accessed in real-time, 
such as process variables, alarm logs, and human-machine 
interactions such as the number of procedures opened, the 
number of times the manual switch was controlled, etc. 
Optuna (Akiba et al. (2019)) was used for hyperparameter 
tuning for the HMM modeling and the best chosen hyper-
parameters are summarized in Table 4. With 95.8% accur-
acy for the situation of alarm overflow (scenario 3), the 

Figure 21. SRLA vs human response of participant (a) P30 and (b) P32 within the time of Interest (TOI) of critical alarms (scenario 2) and alarm overflow (scen-
ario 3).
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HMM was able to predict the hidden state (state 2) for 
which the human would fail the situation using the raw 
data from the process logs, alarm logs, and human-machine 
interactions as shown in Figure 29. The figure represents 
the prediction of the hidden state by the HMM as 
described in Section 4 for datapoints at every second 
(simulation timestep). Defined by the hyperparameter opti-
mization, the total number of hidden states chosen is “3.” 
HMM for every timestep predicts a hidden state based on 
the sequential data and based on those predictions we can 
identify the hidden state that relates to the state of interest 
(such as in our case it is human failure). As illustrated in 
the figures for different human participants in Figure 29, 
we compared the ground truth data for which the partici-
pants failed the scenario, and that corresponded to the 
prediction of hidden state “2.” For the participants that 
succeeded in the scenario without a catastrophic failure, 
there was no prediction of hidden state “2” for the entire 
experiment. The plots reveal that in cases where partici-
pants encountered failure in the scenario, the HMM dem-
onstrated the capability to forecast the failure well in 

advance. The HMM can effectively intervene in human 
actions by issuing timely alarms about potential consequen-
ces and highlighting alternative courses of action.

7.1. Factor loadings on the principal component 
analysis (PCA)

The reason for this analysis is to understand the importance 
of feature sets or data sources used for the prediction of the 
system state based on the state of the process as well as the 
state of the human and human-machine interaction. The 
Principal Component Analysis (PCA) is a method for reduc-
ing dimensionality in multivariate data. It encompasses the 
computation of factor loadings (fij), representing the coeffi-
cients in the linear combination of the original variables (Xi) 
to construct each principal component (PCj). The factor 
loadings for the initial principal component are determined 
by the elements of the eigenvector (akj), acquired through 
the eigenvalue problem for the covariance or correlation 
matrix of the original variables.

Figure 22. Radar plot between participant 30 and 32.
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The principal components (PCj) are novel variables 
formed as linear combinations of the original variables (Xi), 
with the factor loadings (aij) serving as coefficients in these 
combinations.

Factor loadings:

fij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
p

Xp

k¼1
a2

kj

v
u
u
t

Principal components:

PCj ¼
Xp

i¼1
aijXi 

In these equations, p denotes the number of variables in 
the original dataset, These formulae aid in the analysis and 
encapsulation of essential information within a dataset 
through a condensed set of variables. The top 10 factor 
loadings in both directions on the chosen 4 Principal 
Components are shown in Figure 30.

It can be seen from the description of these features as 
provided in Appendix Table A1, that the most important 
factor loadings for the principal components are the com-
bination of process, alarms, and HMI variables.

7.2. Intervention strategies and applications: towards a 
general SRLA-based support system

In the proposed framework, a Dynamic Influence Diagram 
(DID) is used for process-level abnormality detection and 
the Hidden Markov Model (HMM) is for human-level 
abnormality detection. The Specialized Reinforcement 
Learning Agent (SRLA) is used in this loop to identify the 
best possible intervention strategies and suggest them to the 
human operator who is responsible for the final decision. 
Based on these intervention strategies we propose several 
applications for which such a system can be implemented in 
the real world safety-critical process industries. The follow-
ing proposed applications in the real world are based on the 
interviews with the safety-critical industry experts, control 
room operators, and decision-makers:

� Training and Tuning: Such a framework can be imple-
mented during the training of new operators as well as 
training the experienced operators when there is a major 
change in the system. It can help the operator focus on 
the pruned procedures and what is needed to be followed 
in such a situation which can later be generalized by their 
intuition. Furthermore, it can also be used for tuning the 
system’s parameters (Hsieh et al. (2012)) by observing the 
predicted hidden states and control suggestions.

Figure 23. SRLA vs. human response of participant (a) P37 and (b) P96 within the time of interest (TOI) of critical alarms (scenario 2) and alarm overflow (scen-
ario 3).
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Figure 24. Radar plot between participant 37 and 96.

Figure 25. Frequency plot of consequences of participant’s actions during plant abnormality.
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� Decision Support to Operator: Such a system has already 
been tested and provided in this research, where the 
framework is used to provide suggestions to the operator 
in a simulated environment, however, in real-world the 
conditions can be more complex, and therefore, it may 
be challenging to directly implement such a system into 
safety-critical industries (Lee et al. (2007)). Nevertheless, 
even in scenarios where the recommendation seeks the 
operator’s confirmation for automating the process, the 
ultimate decision remains in the hands of the human. 
This approach ensures the implementation of a higher 
level of safety. Therefore, a tradeoff between increased 
task load and aid in decision support is to be made as 
also evidenced by the findings in the experimental 

results. Furthermore, it can also help the operator to self 
asses their operating state and control decisions.

� Decision Support to Supervisor: An alternative applica-
tion could involve offering decision support directly to 
supervisors instead of burdening operators with the add-
itional workload. However, ethical considerations regard-
ing the disclosure of information about the operator’s 
state must be carefully taken into account. In such a con-
figuration, the supervisor can assess the overall system 
performance, determine necessary corrective measures, 
and disseminate relevant information among the 
operators.

� SRLA-Based Validation: Specialized Reinforcement 
Learning Agent (SRLA) can also be trained and used to 

Figure 26. Radar plot between GroupN (blue) and GroupAI (red) for scenarios (a) critical alarm and (b) alarm overflow.

Figure 27. Radar plot between scenarios critical alarm (green) and alarm overflow (violet) for (a) GroupN and (b) GroupAI.
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validate the control actions taken by the operator in 
abnormal as well as normal operating conditions and 
prompt for any predicted consequences as also a similar 
setup developed in Lee et al. (2007).

� SRLA Control: On the opposite end of the spectrum to 
the approach of solely providing suggestions to the oper-
ator is full process automation, particularly in instances 
where the HMM predicts elevated workload, reduced 
situational awareness, or an imminent failure. However, 
the automation would only be performed after receiving 
confirmation from the operator. This form of automation 
proves beneficial in situations where the agent’s speed in 
performing control actions surpasses that of a human, as 
illustrated in our experiment’s scenario 3. It’s crucial to 
acknowledge that incorporating human latency as an 
input to SRLA is essential for delivering more robust 
control suggestions. Furthermore, SRLA can also deter-
mine which processes to automate and which to recom-
mend for manual intervention.

Figure 28. Radar plot between scenarios critical alarm (green) and alarm overflow (violet) for participants (a) P21, (b) P24, (c) P32, and (d) P37.

Table 4. Hyperparameters for HMM modeling.

Hyperparameter Value

n_states 3
model_type “gmmhmm”
n_mix 3
covariance_type “tied”
is_lr True
is_scalar True
is_pca True
n_decomp 4
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8. Discussion

While comparing GroupN with GroupAI the general obser-
vation that was made was that GroupAI had a better overall 
performance and reduced task load, however, the 

participants in GroupAI also had lower situational awareness 
as compared to GroupN. The comparison among partici-
pants in GroupAI revealed that the participants who 
followed the suggestions provided by the Specialized 
Reinforcement Learning Agent (SRLA) more closely resulted 

Figure 29. Sample of participant’s failure prediction based on the real-time simulator log time-series data.
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in better situational awareness and performance, however, a 
higher workload was observed. The differences in these 
experiences highlight the importance of evaluating various 
factors in human-AI interactions for a comprehensive 
understanding.

In situations where a high level of well-informed situ-
ational awareness is crucial, artificial intelligence may not be 
the optimal solution regardless of the workload. However, in 
emergency scenarios and similar cases, the combination of 
AI, along with prior knowledge and training, can prove 
beneficial.

From the correlation analysis in Section 3, it was gener-
ally observed that:

Rating of support /
1

Task load
/ Situational awareness 

Expressing that as participants perceive greater support 
from various components, their task load decreases, and 
situational awareness improves. Hence, for optimal results, 
the decision support system should be universally applicable, 
benefiting each individual. Additionally, providing operators 
with thorough training on such an interface is likely to 
enhance overall performance and situational awareness while 
reducing task load. Furthermore, it can be observed that the 
process, alarm, and HMI logs are correlated with situational 
awareness, task load, cognitive load, attention dynamics, and 
physiological responses. Therefore, these correlations can 
help base future research on identifying such states using 
the Hidden Markov Model (HMM) on the real-time data 
and its implementation in the real world. Further in-depth 
study is needed to interpret the hidden states predicted by 
the HMM and its relation to the physiological state of the 
operator using ground truth data from various sources such 
as an eye tracker, smartwatch, questionnaires, and an elec-
troencephalogram (EEG).

9. Limitations and future work

This study focuses on a specific simulated chemical plant. 
Future studies will aim to replicate the experiment in differ-
ent industrial settings to assess the broader applicability of 
the AI-based decision support system.

Moreover, the study’s participant pool was relatively 
small and they were non-expert students with limited indus-
try experience in process control and control rooms. To 
enhance the robustness of the findings, including a larger 
and more diverse group of participants and real-world oper-
ators in future research is imperative.

In future research, the proposed framework will be used 
in an extended study with human participants. This will 
allow for the evaluation of human-state (failure) prediction 
and the provision of improved intervention strategies in real 
time. Furthermore, the possibility of creating a human 
digital twin will be explored to be able to run the entire 
experiment in simulation without the need of real human 
participants and the digital twin will be used as their 
replacement to be able to have more flexibility in terms of 
experimental validations. Furthermore, in current research 
only human failure was predicted, however, the correlation 
between that failure and its association with task load and 
situational awareness is yet to be explored.

The integration of real-time feedback mechanisms to con-
tinuously adapt and improve the AI system’s performance 

Figure 30. Top 10 factor loadings in both directions on the Principal 
Component analysis (PCA).
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based on operator interactions and feedback is aimed for 
further exploration. Conducting comparative studies to 
evaluate the AI system’s performance against traditional 
decision support systems or other AI-based approaches in 
similar industrial contexts will further validate the proposed 
framework.

Developing these AI-enhanced decision support systems 
entails significant overheads and challenges, particularly in 
terms of technical requirements, financial investment, and 
operational integration. The technical overhead includes 
data acquisition, management, and the computational 
demands of model training and system integration. 
Financially, the initial setup and ongoing maintenance create 
a substantial cost barrier. Operationally, integrating these 
systems within existing frameworks can disrupt current 
workflows and require significant adjustments. However, the 
potential for generalization across different settings presents 
a promising avenue to offset these overheads. By designing 
these systems with modularity and employing transfer learn-
ing techniques, we can better tailor AI-enhanced DSS to 
various industrial environments without extensive reconfig-
uration. Moreover, standardizing system interfaces could 
facilitate broader deployment, making the initial high costs a 
worthwhile investment given the extended applicability and 
potential for significant improvements in decision-making 
processes. The feasibility of such generalization will be rigor-
ously tested in future studies, aiming to replicate and adapt 
the current framework across diverse operational settings, 
thus providing a clearer picture of the scalability and adapt-
ability of our AI-enhanced DSS in real-world scenarios.

Moreover, current research does not investigate the eth-
ical and social implications of integrating AI systems into 
safety-critical industries, including considerations of trust, 
accountability, and transparency that would be the request 
for future research.

10. Conclusion

This study introduces an AI-based recommendation system 
using dynamic influence diagrams and reinforcement learn-
ing to tackle information overload in complex industrial 
environments, with a focus on chemical process control 
rooms. Preliminary results indicate the system’s potential to 
reduce operator workload and enhance situational aware-
ness, especially in situations of information overload and for 
less experienced operators.

Feedback from NASA Task Load Index (TLX) and 
Situation Awareness Rating Technique (SART) question-
naires, along with eye-tracking data, suggests a decrease in 
perceived workload and increased situational awareness 
when the recommendation system is active. Additionally, a 
reduction in operators’ heart rates while using the system 
implies a potential reduction in the stress associated with 
managing process deviations.

While these results are promising, further research with 
larger participant samples is needed to confirm these find-
ings and optimize the system for broader application in 
real-world industrial settings. This research contributes to 

the advancement of AI decision-support tools in safety-criti-
cal industries, paving the way for improved process safety 
and more efficient decision-making.

Notes

1. https://github.com/ammar-n-abbas/drl-based-decision- 
support

2. https://zenodo.org/doi/10.5281/zenodo.10569181
3. https://github.com/ammar-n-abbas/drl-based-decision- 

support
4. Mimics: Graphical interfaces that represent the layout and 

components of the sub-processes. These mimics allow the 
user to analyze variables associated with the sub-process and 
to be able to manually control if necessary.

5. SART demand: Sum of the first three dimensions, SART 
Supply: Sum of dimensions 4, 5, 6, and 7, SART 
Understanding: Sum of the last three dimensions. 
Dimensions are presented in order in Table 1.
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Appendix A. Process, Alarm, and HMI Logs Description. 

Table A1.  

Var Name Description

LSERB_1 Tank level
All2_XX Alarm activation
sAll_XX Alarm sound silence
PSERB_1 Tank pressure
Human Control adjusted by human
Nitsel_1 Nitrogen system selector
AckAll Alarm action
SRLA_vs_Human Error between the suggestion and chosen control
SRLA Control suggested by SRLA
MCReatTempOld_1 Manual reactor cooling value
MmanNit_1 Manual primary flow value
LinasO_1 Water IN flow
MVAPrec3_1 Flow steam REC3
MAssWatO_1 Manual absorber water selector
intop_1 Open interface
REC3WMO_1 Manual REC3 selector
MWpopOld_1 Manual Pump power value
MpumpOld_1 Manual Pump selector
intop_5 Open interface
FN2serb1O_1 Primary nitrogen flow
MCoolreatOld_1 Manual reactor cooling selector
intop_2 Open interface
MliqbolO_1 Methanol mass in the boiler
MNitsel_1 Manual primary nitrogen selector
MAssWatFlowO_1 Manual absorber water value
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